nformatics dbai™

Intelligence Group

ICAPS 2024: Tutorial

AI Techniques for Solving Scheduling
Problems

Lucas Kletzander, Nysret Musliu, Florian Mischek

Christian Doppler Laboratory for Artificial Intelligence and
Optimization for Planning and Scheduling

Institute of Logic and Computation, DBAI
Faculty of Informatics, TU Wien

y N
D]I ‘II Al .M'_;L
Christian Doppler b " 4
Forschungsgesellschaft

Outline

= Scheduling Problems: Case studies

= Solution techniques
= Solver-independent modelling
= Constraint programming
= Metaheuristic techniques
= Hybrid methods

= Automated algorithm selection and instance space
analysis

= Automated algorithm design/Hyper-heuristics

= Industrial applications

Scheduling Problems: Case studies

Investigated Applications in our Lab

Rotating Workforce Scheduling

Shift Design

Break Scheduling

Nurse Rostering

Torpedo Scheduling

Electric Vehicle Charging
Tourist Trip Planning

Social Golfer Problem

High School Timetabling
Production Leveling Problem
Parallel Machine Scheduling

Industrial Oven Scheduling

Physician Scheduling During a Pandemic

Unicost Set Covering
(Hyper)tree Decomposition
Graph Coloring

Traveling Salesman Problem
Vehicle Routing

Sudoku

Bus Driver Scheduling

Test Laboratory Scheduling

Artificial Teeth Production
Scheduling

Project Scheduling
Paint Shop Scheduling Problem

Curriculum-based Course
Timetabling

Employee Scheduling

Work schedules influence the lives of employees

Unsuitable timetable can have a tremendous
negative impact on one's health, social life, and
motivation at work

Organizations in the commercial and public sector
must meet their workforce requirements and
ensure the quality of their services and operations

Employee Scheduling

Companies

Employee Scheduling

Real world employee scheduling problems appear in many companies

Airports

Call centers

Air traffic control
Hospitals

Public transport

Production plants

124

(=X~ TN SR - e
1 1 1 1

Employee Scheduling Problems

500 0600 0700 08:00 0900 10:00 11:00 12:00 13:00

Phase 1:
Workforce requirements

Employee Scheduling Problems

Phase 1:
Workforce requirements

4 Phase 2:
2] Shift Design/Break Scheduling

05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00

A [T
Skl -dllur

~
1

6:00 07:00 08:00 09:00 10:00 1L00 1200 1300 1400 15:00 16:00 17:00 18:00 19:00 20:00 2800 220

€00 7:00 |3:W IS:W |W:W |'I'I:I)O 12:00 1300 ,14:00 15:00 (1600 17:00 12:00 ,19:00 ,20:00 ,21.00
N I]
B
=
[5) I I
E] 1 T 1]
[F_1 1
[E 11
=1 I 1]
E 11 T 1 K T 1 1]
L I I1 [I 1
(1= I 1 I]
a [| I]
E_T1 T 1 1]

Employee Scheduling Problems

Phase 1:
=l Workforce requirements
101 —
"
6
4 Phase 2:
21 Shift Design/Break Scheduling
0

05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00

AL HI‘LFLUE] r Phase 3:

_IL'-UJ e i Assignment of shifts
E'DD DT'Er 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21"00 220 Ml:l Di Mi Dl:l Fr Sa Sl:l
a [F F F 5 |5
7N — — — i 5 = - : - T B M M M M
B
= Z F F M N M M
D | | N
E I 1 1 1 D 5 5 5 M M
11
E 11 — | E M F F 5 S
[F [1
E11 1 S 1 1] F 5 F F F F
C I I 1]
1= | 1 I] 3 5 3 F F
G 1 1 I 1]
E 11 1 1] H F 3 2 3 3
| | || I 1 1
11 [1 [1] I M | M

Selected papers: [3,4,11,12, 13]

Example: Rotating Workforce Scheduling

Length of schedule: If the schedule is cyclic the total length of a
planning period will be: NumberOfEmployees*7

| Mo | Tu|we] b | Fr | Sa | 5o

o O O O O (]

E O O O O

L fa] fa] fa] fa] o,

| =] =] =] =] =]

E (] (] =] =] =]

F =] =] (| (| (|

i (| (| (| (| (|

H (| (| (| (| (|

I O O O =] i

1 O O (| (|

K (| =] =] (|

L MM o /b D

Emmg shifts:

Number of _ _
employees D: Day shift ; A: Afternoon shift,

N: Night shift; Day off

Constraints

Not allowed sequences of

[rMc] tu|we | Th | Fr | 5a | su| shifts:
2, [= D D » o1
E = D D D A
= A A A A i oy O
D A A A A i R
E = s A A i -
FE = |~ ™ ™ ™]
= ™ ™ ™ ™ ™
H | ™ ™ ™ ™ _ S
1| D O D A\ A Maximum and minimum
B s » M M :
O — s A length of periods of
L ™ o D

- successive shifts.
\ \\ e.g.: N: 2-5, D: 2-6
Temporal requirements:

Maximum and minimum length

required number of employees of work days and days-off blocks

in shift / during day j e.qg.: days-off block: 2-4

Monday (Mo): D: 3, N: 3, A: 3 work block: 2-6

Objective

Find a cyclic schedule (assignment of shifts to
employees) that satisfies the temporal requirement, and
all other constraints

Possible soft constraints:
« Optimization of free weekends (weekends off)
* Optimizing the distribution of weekends

Test Laboratory Scheduling

Input Solution
@ Scheduling @ Grouping of tasks into jobs
period @ Assignment of

@ Resources - » Execution mode,
. » Starting timeslot, and
@ Projects and &

» Resources
Tasks

@ Initial
assignments

to each job

Test Laboratory Scheduling

Project 1

Job 1
(Tasks 1, 2, 3, 5)

Job 2
(Task 4)

Job 3
(Tasks 6, 7)

Project 2

Job 4
(Tasks 8, 9, 10, 11)

Job 5
(Task 12)

Job 6
(Tasks 13, 14, 15)

Job 7
(Task 16, 17)

'........................----'
Ma : E1, E2/ WBs/ EQa

(24

E]MB :El/\NB3
P71 |

Mg : E3/ WB1/ EQs, EQo

|////{
Z

|

[S
MA :E1,E4/\NBl

L2] |
MB :Ez/VVBl
@ |
MB :Ez/\NBz
L2227
Ma : E3,Es / WB3
222

Hard Constraints - Grouping

Project 1

Job 1
(Tasks 1, 2, 3, 5)

Job 2
(Task 4)

Job 3
(Tasks 6, 7)

Project 2

Job 4
(Tasks 8, 9, 10, 11)

Job 5
(Task 12)

Job 6
(Tasks 13, 14, 15)

Job 7
(Task 16, 17)

P

Mp / Ey, Ex | WBs [EQy

|
E/IB / E1 / WBs
| |

Mg |/ E3 | WBy |/ EQg, EQqg
| |

Project 1 - Families:

o F1: {12345}
o F2: {67}

P

My / E1, Es | WBy
| |

Mg /| Ex | WB;

F My / E3, Es /| WB3
|

Mg / Ex | WBy

Hard Constraints - Resource requirements

Project 1

Job 1
(Tasks 1, 2, 3, 5)

Job 2
(Task 4)

Job 3
(Tasks 6, 7)

Project 2

Job 4
(Tasks 8, 9, 10, 11)

Job 5
(Task 12)

Job 6
(Tasks 13, 14, 15)

Job 7
(Task 16, 17)

P

Ma / E1, E; [WBs | EQy

|
F}]"B / E1 / WB3
| |

Mg / Es /| WBy /| EQg, EQq
| |

Job 1 - Requirements:

@ Employees: 2
@ Workbench: 1
@ Equipment: 1

P
My / E1, Es | WBy
| |

Mg / Ex | WBy
| |

FF' My | E3, Es | WB;
|

Mg /| E> | WB;

Hard Constraints - Resource availability

Project 1

Job 1
(Tasks 1, 2, 3, 5)

Job 2
(Task 4)

Job 3
(Tasks 6, 7)

Project 2

Job 4
(Tasks 8, 9, 10, 11)

Job b
(Task 12)

Job 6
(Tasks 13, 14, 15)

Job 7
(Task 16, 17)

P

My / Ev, Ex | WBs | EQq

Job 1 - Availability:

|
E/IB/EI/WB?, ® £, by, B
| o WB4, WB5
Mg / Es /| WBy | EQg, ;EQQ @ FEQu, EQs, EQy

—
Mp [Ex, Ex | WBy
| |

Mg |/ Ex | WBy
| |

P My / E3, Es | WB3
|

Mg /| Ex | WB;

Hard Constraints - Precedence

Project 1 P

Map [Er, Ex /| WBs | EQy
Job 1

(Tasks 1, 2, 3, 5) |
Job 2 Mg / E1 /| WBs
| |

(Task 4)

Mg [/ E3 /| WBy | EQg, EQqg

Job 3
(Tasks 6, 7) | |
Pl’OjeCt 2 P
Ma [E1, E4 | WBy

(Tasks 8, 9, 10, 11)

M E WB
ok B lB/ b X |1

(Task 12)

Mg / Ex | WB;

Job 6
(Tasks 13, 14, 15)
Ma | E3, Es /| WBs3
|

Job 7
(Task 16, 17)

Hard Constraints - Time Windows

Project 1

Job 1
(Tasks 1, 2, 3, b)

Job 2
(Task 4)

Job 3
(Tasks 6, 7)

Project 2

Job 4
(Tasks 8, 9, 10, 11)

Job b
(Task 12)

Job 6
(Tasks 13, 14, 15)

Job 7
(Task 16, 17)

P

Ma /By, En /| WBs | EQy

|

|

|

|

|

| :
|

Mg / E1 /| WB3 |
|

| | |
|

|

|

|

|

|

Mg / E3 / WB; / EQg, EQq
| |

MA / E1, E4 / WBy I

Mg | Ex | WB;
| |

|
E’] My / E3, Es /| WBs3

Mg |/ Ex /| WB;

|
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|

Release date Deadline

Hard Constraints - Linked Jobs

Project 1

Job 1
(Tasks 1, 2, 3, 5)

Job 2
(Task 4)

Job 3
(Tasks 6, 7)

Project 2

Job 4
(Tasks 8, 9, 10, 11)

Job 5
(Task 12)

Job 6
(Tasks 13, 14, 15)

Job 7
(Task 16, 17)

T

Mp [B, Ex | WBs [/ EQy

|
g//s / E1/ Vll/Ba

Mg / E3 /| WBy |/ EQg, EQq
| |

Linked Jobs:
@ Jobb5and 6

P
Mp / E1, Ey /| WBy
| |

Mg / Ex /| WBy

—

f}\' Mp / E3, Es /| WB3
|

Mg /Ey) WBy , -~

Objectives - Number of jobs

Project 1

Job 1
(Tasks 1, 2, 3, 5)

Job 2
(Task 4)

Job 3
(Tasks 6, 7)

Project 2

Job 4
(Tasks 8, 9, 10, 11)

Job 5
(Task 12)

Job 6
(Tasks 13, 14, 15)

Job 7
(Task 16, 17)

P

Ma) E1, Ex | WBs /| EQq

I
Fjs / E1 / WBs
| |

Mg / Es /| WBy / EQg, EQq
| |

P
Ma [Ex. Eq | WBy
| |

Mg /| Ex /| WB;
| |

EW My | E3, Es /| WB3

Mg /| Ex | WBs

Objectives - Target dates

Project 1 P E—

I
My [/ Er, Ep /] WBs /| EQy 1

Job 1 I
I

(Tasks 1, 2, 3, 5) |

[

Job 2 /IV’B:/ E / V;/B:a
(Task 4) |
[
Job 3 MBl/ E3 /| WB; / EQs,]EQQ :
(Tasks 6, 7) :
[
- |

PrOJECt 2 P
[
MAI/ E]_, E4 / WBl

Job 4 |
(Tasks 8, 9, 10, 11)

Mg | Ex | WBy
| |

E My | E3, Es | WB;

Job 5
(Task 12)

Job 6
(Tasks 13, 14, 15)

Job 7
(Task 16, 17)

I
|
|
|
I
Mg, /| Ex | WB,
|
|
|
|
|
|

Target date

Objectives - Resource preferences

Project 1

Job 1
(Tasks 1, 2, 3, 5)

Job 2
(Task 4)

Job 3
(Tasks 6, 7)

Project 2

Job 4
(Tasks 8, 9, 10, 11)

Job 5
(Task 12)

Job 6
(Tasks 13, 14, 15)

Job 7
(Task 16, 17)

P

My) Ei, Ex | WBs | EQy

|
g/’s / E1 /] WBs
| |

Mg / E3 /| WBy / EQg, EQqg
| |

Job 1 - Preferences:
@ £, £ E3
e WB,, WBs
® EQ4, EQs, EQy

—
My / Ev, B4 /| WB;
| |

Mg | Ex | WByq
| |

E My / E3, Es /| WB3

Mg / E; | WB;

Objectives - Project duration

Project 1

Job 1
(Tasks 1, 2, 3, 5)

Job 2
(Task 4)

Job 3
(Tasks 6, 7)

Project 2

Job 4
(Tasks 8, 9, 10, 11)

Job 5
(Task 12)

Job 6
(Tasks 13, 14, 15)

Job 7
(Task 16, 17)

)

Mp / By, Ex /| WBs [EQy

|
F’JB / E1/ WBs
| |

Mg /| E3 /| WBy / EQg, EQq
| |

_)
My | Ex, Ey | WBy
| |

Mg | E; /| WB;
| |

E Mp / E3, Es /| WB;3

Mg /| Ex | WB>

Objectives - Different employees

Project 1

Job 1
(Tasks 1, 2, 3, 5)

Job 2
(Task 4)

Job 3
(Tasks 6, 7)

Project 2

Job 4
(Tasks 8, 9, 10, 11)

Job 5
(Task 12)

Job 6
(Tasks 13, 14, 15)

Job 7
(Task 16, 17)

P

Mp [E1, Ex | WBs | EQy

|
EAB / E1 /| WB3
| |

Mg |/ E3 /| WBy /| EQg, EQq
| |

P
Mp [/ Ey, Eq [WBy
| |

Mg / E> /| WBy
| |

E}\l My / E3, Es | WB;

Mg | Ex | WB;

Task grouping

A job consists of one or several tasks, which define its properties:

Job j

~

' max ry

~

Setup time

Sf

~

@ Available resources: R; = 'R+

2 dt

@ Time window: a; = max o, wj = min wy

Production Planning and Scheduling

= In these applications it is important to
= Reduce resource consumption, including energy
= Increase production efficiency

R1 R2 R3

1

....... 2
3

4

5

https://commons.wikimedia.org/wiki/File: https://commons.wikimedia.org/wiki/File:
6! 61229. jpg, Christian Taube Reflow_oven. jpg, Nelatan

MOS6581_chtaube! eflo
CC BY-SA 25 CC BY-SA 3.0

Industrial Oven Scheduling

https://commons.wikimedia.org/wiki/File: https://commons.wikimedia.org/wiki/File:
M0S6581_chtaube061229. jpg, Christian Taube Reflow_oven. jpg, Nelatan
CC BY-SA 25 CC BY-SA 3.0

Task: Jobs need to be scheduled and batched efficiently for processing in ovens

Challenge: Many constraints and solution objectives need to be considered

Selected papers: [8]

Paint Shop Scheduling

w| w|a]=][=] 3
w| @] a]a]a] 3

O W N

Selected papers: [6,7]

Other real-world problems...

Machine 1: [ﬂ—{ 2]—' 11 jy‘ 4 N 5)(G HT]

Machine 2: (8 H 9 H 10 H 3 —{ 12 J

Parallel Machine Scheduling

Torpedo Scheduling, ACP Challenge, 2016

Selected papers: [9,10]

Other problems...

Time Monday Tuesday Wednesday Thursday
8:00-9:00 Math Biology Math Math
9:00-10:00 Math Chemistry Biology
10:00-11:00 Physics Physics

Week1l Week2 Week3 Week 4
6 1012 8 4 6 1 4 2 6 5 14
13 3 4 12 3 7 11 6 15 2 10 7
155 1 1011 5 7 13 9 4 9 11
1114 7 1315 2 12 8 5 315 8
8 9 2 914 1 1410 3 12 1 13

Selected papers: [24, 25, 26]

(@) SUSTAINABLE ¢ s
E37 DEVELOPMENT \J %un® ALS

NO GOOD HEALTH QUALITY GENDER
POVERTY AND WELL-BEING EDUCATION EQUALITY

DECENT WORK AND » 10 REDUCED
ECONOMIC GROWTH INEQUALITIES

A

(=)

13 CLIMATE 14 LIFE 16 PEACE, JUSTICE 17 PARTNERSHIPS
ACTION BELOW WATER AND STRONG FOR THE GOALS

INSTITUTIONS

> |

https://www.un.org/en/sustainable-development-goals

CLEAN WATER
AND SANITATION

=
oy

Solving techniques

Al and optimization methods

Complete approaches Metaheuristic techniques
Constraint programming Tabu search

Answer set programming Simulated annealing
SAT/SMT Evolutionary strategies
Mathematical programming Memetic algorithms

Hybrid methods
Large neighborhood search

Hyper-heuristics
Machine learning based approaches

Research work in the CD-Lab Artis

Existing problems

New challenging
problems provided by
the industry

https://cdlab-artis.dbai.tuwien.ac.at/

Formal mathematical
formulations

Identification of
related problems in
the literature

Complexity analysis

General variants of
problems

New problem
instances provided
to the literature

Novel modeling
Al solving techniques
Hyper-heuristics

New (hybrid)
algorithms

Algorithm selection
and instance space
analysis

Decision support
systems

Constraint Programming Techniques

= Tree search

= (Constraint propagation

= Forward checking

= Lazy clause generation

= Variable ordering heuristics

Modeling and solvers

= (Constraint Programming
= Solvers: OR-Tools, Chuffed, CP Optimizer...

= The MiniZinc challenge:
https://www.minizinc.org/challenge.html

= Mathematical Programming
= Solvers: Gurobi, CPLEX...
= Answer Set Programming

= Solvers: Potassco (the Potsdam Answer Set Solving
Collection), DLV, ...

= SAT
= Solvers: http://www.satcompetition.org/

MinZinc

= Constraint modeling language

= Used for modeling constraint
satisfaction/optimization problems
= High-level
= Solver-independent

= Model is compiled into FlatZinc that is understood by a
wide range of solvers (CP, MIP, ...)

= MiniZinc is developed at Monash University
= Free and open-source

Example

Listing 2.1.1: A MiniZinc model aust.mzn for colouring the states and territories in

Australia

% Colouring Australia using nc colours
int: nc = 3;

var 1..nc: wa; var 1..nc: nt; wvar 1..nc: sa; var l-sne:q:
var 1..nc: nsw; var 1l..nc: v; VaERIEE NG Rt - /
W ‘,/
constraint wa != nt; | &h\;
constraint wa != sa; L b
constraint nt != sa; \ w0 ¢ ®
constraint nt != q; x T’”;; ,,,,,,,,,,,,,,
constraint sa != q; \ : T—
constraint sa != nsw; Z\AJ/”_'//F_—\vﬂ ., J
constraint sa != v; ;*\L\ﬁ;;?’/
constraint gq != nsw; ij
constraint nsw != v;

solve satisfy;

output ["wa=\(wa)\t nt=\(nt)\t sa=\(sa)\n",
"=\ (@) \t nsw=\(nsw)\t v=\(v)\n",
”t=”, ShOW(t), H\nn];

MiniZinc Handbook. Peter J. Stuckey, Kim Marriot, Guido Tack:
https://www.minizinc.org/doc2.2.1/en/MiniZinc%?20Handbook. pdf

Rotating Workforce Scheduling: Constraint Programming

e Schedule representation where
* w... the number of days in a week
* n...the number of workers

M TIWITIFISIS MITIWITIF[S]S M| T|W[T]F]S]

To Ta T2 T3 Ta Ts Te| T7 Ta To Tao Tz Taz Tas| . | Tows Trwes Tow-s Towed Tow-3 Trwe2 Truet

MITIW[T|F|S|S

S11 S12 S1,3 S14 Si5 S16 Si7
521532 1523152411525 5261527 Tk — S1+(k/w),1+(k mod w)

Sn,l Sn,2 5n,3 Sn,4 5n,5 Sn,6 Sn,?

e Variable domains T, € {D,A,N, O}

N. Musliu, A. Schutt, P. J.Stuckey: Solver Independent Rotating Workforce Scheduling. CPAIOR 2018

Temporal Requirements

» For each day d in the week)’ (S;,=sh)=R,,, where
® Sh [{D, A, N} i€l..n

* Rshd ... the requirement for shift sh at day d

Global constraints

 Instead of a set of linear constraints for each day, using one global
cardinality constraint

MIT W[T|F]
54111512 D13l S5 |51 5 5761 S 7
5012|1522 523 [S24](525 52,6|52,7

> 8CC([51775 sap Sn77]9 [D9 Aa N]s [25131])

202N e

E¥:1 1 1 1 1
i1 1 1 1 1

» Redundant constraint
gCC([Sl s s Sn,d]a [Da Aa N9 0]9 [RD,d’ RA,d’ RN,d’ RO,d])

Sequence constraints

* For each day d in the schedule
* Maximal length constraints for D, A, N, and O
* For example, 4 for N

M|T{W|[T[F[SIS M[T|W[T[F|S|S M| T |W|T|F|S
T1 T2 T3 T4|Ts Ts T7 Tg Tio T11 T12 T13| vo | Tow-7 Tow-6 Tow-5 Thw-4 Trw-3 Thw-2 Thw-1

Y (T;#N)>0 (Tgy; #N) >0
i€0..4 1€0..4

e Constraints for the maximal length maxWB for work blocks

Y Ty=0)>0

i€0.maxWB

Sequence constraints

* For each day d in the schedule
* Minimal length constraints for D, A, N, and O
* For example, 3 for N

MBMMHH_E.““H
To\T1] T2} T3 T4

Is T T7 Ts To9 Tio0 T11 T12 T13| |an-7 Tow-6 Tow-5 Taw-4 Trw-3 Taw-2 Thw-1

Ty #NATy,=N— Y (Tp,;#N) =0
i€l.2
e Constraints for the minimal length minWB for work blocks

T, =OAT;#0— Y (T;;=0)=0
i€0..maxWB

* For each day d in the schedule
* Forbidden sequences of length 2
* For example, ND

Iy=N—->T14,#D

* Forbidden sequences of length 3
* For example, N-D

Iy=NAT; ., =0—->T1,,%D

Symmetry Breaking Constraints

* Day-off at the last day in the schedule Ry, >0-S,,=0
* Work day at the first day in the schedule
(Vsh € {D,A,N},¥j €2.w:Ry ;1 =Ry)V Ry, <Ry,) = S #0

Mon mmmm

Fred [ile]1 0]

2 N R
2N
o E]
: : O B N e
? : S ?I:I
28 20 2 2 2
1 IS I I |
1 1 I S

MiniZinc model

https://www.minizinc.org/challenge2018/results2018.html

Download all problems -> rotating-workforce

Test Laboratory Scheduling: Constraint Programming

Major challenge: Representing grouping

Solution: Representative task for each job

Task 1 I Job a
Task 1
Task 2
Task 2
Task 3 I 4mmm——) Task 4
Job b
Task 4
Task 3
Task 5 Task 5

P. Danzinger, T. Geibinger, D. Janneau, F. Mischek, N. Musliu, C. Poschalko: A System for
Automated Industrial Test Laboratory Scheduling. ACM Trans. Intell. Syst. Technol. (2023)

Example Constraints

Resource availability:

assigned[repr(t], r] =1 = r € R;
vVt € Tasks, r € Resources

Resource requirements:

Z assigned[t, r] — {maxf'ETasks:repr[t/]t \Reqt/\ If repr[t] — t

0 otherwise
rEResources

Vt € Tasks

Large neighborhood search

Initialize solution

Return best solution

Various problem dependent
Apply destroy / operators

operator

Y

Exact solvers (CP, MIP...) or other
Apply repair 0perator- ' greedy/heuristic methods

Y

Update best solution

Test Laboratory Scheduling: LNS

Repeatedly generate and solve simplified CP instances:

» Only k projects can be scheduled, the rest of the schedule is
fixed

» Initially, kK = 1, increases when stuck
» Tabu list
» Some scheduling-only steps, with fixed grouping

posees- +
o o -
2 I
=
|
3=
095
mEm 9_
prmeaeemeareeaeens -
o +ir E
-
: =
00 o f--
000 fooeeeeeeco-- NI +
_

(umouy 1s9q 0} aAne|al)
Kyeusad

Metaheuristics

Local Search Techniques

= Based on the neighbourhood of the current solution

N(x) S
x

= The solution is changed iteratively using
neighbourhood relations (moves)

= Acceptable or optimal solutions are often reached

Local Search Techniques

1. Construct the initial solution s
2. Generate neighbourhood N(s) of solution s

3. Select from the neighbourhood the descendant of the
current solution

4. Go to step 2

Advanced metaheuristic techniques
Simulated Annealing

Tabu Search

Iterated Local Search
Min-Conflicts

Metaheuristics include a mechanism to escape local
optima

Neighborhoods: Rotating Workforce Scheduing

Mon | Tu= | Wi'ed | Thu | Fri | Sak | Sun
fa ! [[o))
E D o, E M D
C (I [| (I (I o [|
C M~ e o
E (I [| C o C
F (| o o (I e
i (I C o o (| (|
H i, 0, (I |
I 0, | o,
1 0, | | I~
K ™ o N o]
L o o [| |

ron | Tue | W'ed | Thu | Fri I Sak I S
o)) o [[
B = oy M| ™ C»
L) | [[o |
[| o fu
E] [|] o]
F | el o [o
L (I (I o o [|
H o o) (|
I o (| e
1 £ e | I~ e |
ke N £ N ol
L a, 0, (I | (|

Neighborhoods: Test Laboratory Scheduling

Scheduling neighborhoods Regrouping neighborhoods
@ Timeslot change @ Transfer task between jobs
@ Mode change @ Merge jobs
@ Single resource change @ Split jobs
o JobOpt » Move subset of tasks to
new job

» Change all assignments of

single job » Variant: Linear split

Memetic Algorithms: Crossover

Hybrid techniques

Methods of Artificial Intelligence
(Machine Learning, Heuristics...)

Methods of Logic Mathematical Optimization

nimi /S1
sl §lmax minimize [= 30 % Z oS
scS

x=1

de{1...7}

y=sl; “
+15% Y (Cpad + Crad)
neN

sES
de{l1...7}

e Y (O O3
neN
de{1...7}

Part 1: Conclusions

= Many optimization problems in industry are still solved
manually

= Al and optimization offer tremendous potential for further
improving solutions in these domains

= Success stories:
= Test lab scheduling
= Workforce scheduling
= Machine scheduling
= Oven scheduling
= Educational timetabling, Sport timetabling

= No free lunch
= Combination of Al and optimization techniques is crucial

Challenges

= Automated generation of neighborhoods
= Weights for soft constraints

= Explainability

= Automated modeling

Automated algorithm selection

Algorithm Selection - Motivation

Often, several search algorithms are available for solving a
particular problem

» No free lunch theorem

» " .. for any algorithm, any elevated performance over one
class of problems is offset by performance over another class”

> " ..any two algorithms are equivalent when their performance
is averaged across all possible problems”

Wolpert and Macready, “No free lunch theorems for optimization”, 1997
Wolpert and Macready, “Coevolutionary free lunches”, 2005

Algorithm Selection - Motivation

Often, several search algorithms are available for solving a
particular problem

» No free lunch theorem

» " .. for any algorithm, any elevated performance over one
class of problems is offset by performance over another class”

> " ..any two algorithms are equivalent when their performance
is averaged across all possible problems”

= How to select the best algorithm for a specific problem
instance?

Wolpert and Macready, “No free lunch theorems for optimization”, 1997
Wolpert and Macready, “Coevolutionary free lunches”, 2005

Algorithm Selection Problem, Rice (1976)

xeP
PROBLEM

SPACE

feature
extraction f

fx)e F
FEATURE
SPACE

a = S5(fix))

yeyY
PERFORMANCE

SPACE

Select a to y(ou(x)) apply algorithm o
maximise [|y]|

a€A
ALGORITHM

SPACE

Selection Mapping

Rice, “The algorithm selection problem”, 1976
Smith-Miles, “Cross-disciplinary perspectives on meta-learning for

algorithm selection”, 2009

Algorithm Selection Problem, Rice (1976)

Input:
» Problem space P that represents the set of instances of a
problem class

> Feature space F that contains measurable characteristics of
the instances generated by a computational feature extraction
process applied to P

> Set of considered algorithms A for tackling the problem

» Performance space Y maps application of an algorithm on
an instance to a set of performance metrics

Algorithm Selection Problem: For a given problem instance

x € P, with features f(x) € F, find the selection mapping S(f(x))
into the algorithm space, such that the selected algorithm o € A
maximizes the performance mapping y(a(x)) € Y.

Back to the Example: Rotating Workforce Scheduling

» Varying demand for different shifts

Shift ‘ Mon Tue Wed Thu Fri Sat Sun
D 1 1 1 1 1 1 1
A 1 1 1 1 1 1 0
N 1 1 1 1 1 1 1

» 4 employees, cyclic schedule

» Regulations constraining shift assignments
» 5-7 days on work, 2-4 days off

> D: 2-5 days, A: 2-4 days, N: 2-3 days

» No D after A or N, no A after N

Back to the Example: Rotating Workforce Scheduling
Problem space P:
» 20 initial real-life instances

» 2000 generated instances

Kletzander et al., “Exact methods for extended rotating workforce
scheduling problems”, 2019

Musliu, “Heuristic methods for automatic rotating workforce scheduling”,
2006

Back to the Example: Rotating Workforce Scheduling

Problem space P:
» 20 initial real-life instances

» 2000 generated instances

Algorithm space A:
» Constraint programming model:
» MiniZinc modelling language
» Lazy clause generation solver Chuffed
» Metaheuristic combining methods from:

» Min-conflict heuristics
» Tabu search
» Random walk

Kletzander et al., “Exact methods for extended rotating workforce
scheduling problems”, 2019

Musliu, “Heuristic methods for automatic rotating workforce scheduling”,
2006

Back to the Example: Rotating Workforce Scheduling

Performance space Y:
> Satisfaction problem

» Measure runtime to feasible solution (timeout 1000 seconds)

Back to the Example: Rotating Workforce Scheduling

Performance space Y:
> Satisfaction problem

» Measure runtime to feasible solution (timeout 1000 seconds)

Feature space F: How to get features from instance data?
» n employees
» Length of schedule w
» Set of work shifts A + day off O, At = AU {0}
» Temporal requirement matrix R
» Min and max work block length ¢, and u,
» Min and max block lengths for shifts and days off /5 and us
(s e AT)
> Set of forbidden sequences F

Direct Instance Features

Take instance data to directly use as features:
» Number of employees n
» Number of shifts m

» Minimum and maximum length of work blocks ¢, and u,, as
well as blocks off shift /o and ugp.

» Minimum, maximum and average for each of the sets
{ls|seA}and {us | s € A}

» Number of forbidden sequences f.

Advanced Instance Features

Compute features from relations, matrices, graphs, ...

» workFraction: Percentage of all days spent working

» shiftFraction: Distribution of requirements between shifts
» blockTightness: blockTightness = up — low
>

avgBlockLength: Lower and upper bound for the average
block length

shiftBlock Tightness: Freedom in choosing block lengths for
individual shift types

v

» shiftDayFactor: Regularity of shifts throughout the week

» dayFraction: Workload in relation to the number of employees
for individual days

» dailyChange: Change in workload between consecutive days

Model Features

Run fast algorithm initializations, heuristics, ...

» MiniZinc to FlatZinc conversion statistics

» Number of boolean and interger variables
» Number of boolean and integer constraints

» Initialization in Chuffed:

» Number of variables, propagators, SAT variables
» Number of binary, ternary, and long clauses
> Average length of long clauses

Algorithm Selection

Use any supervised machine learning approach of your choice:
» Bayesian Networks

Decision Trees

k-Nearest Neighbor

Random Forests

Multilayer Perceptrons

Support Vector Machines

vVvVvYvyVvyVvyy

Deep Neural Networks

Algorithm Selection and Analysis for RWS

Method: Random Forests

Chuffed vs. metaheuristic: accuracy 80%

>

>

» Predict timeout: accuracy 93%

» Feasible vs. infeasible: accuracy 98%
>

Regression on magnitude of runtime: correlation 0.7 to 0.8

Learning within Algorithms

In this tutorial section: Decision between different algorithms

Other option: Selection / learning within algorithms

P Later in this tutorial: Learning to select algorithm components
(hyper-heuristics)

» Example for tree search: Variable / value selection

Learning without Features

Finding adequate features is one of the main challenges in
algorithm selection

= What about algorithm selection without features?
> Recent research direction

» Directly use instance data as time series for Recurrent Neural
Network (RNN)

» Application to online 1D bin packing

Alissa, Sim, and Hart, “Automated algorithm selection: from feature-based
to feature-free approaches”, 2023

Instance space analysis

Instance Space Analysis - Motivation

How do we analyze which method works well on which instances?
How do we evaluate a new method for our problem?

» Use benchmark instances
> Better in the average?
» Better in certain cases?

» Do the benchmark instances cover all interesting areas?

= How to check instances and features to make sure that we can
properly identify strengths and weaknesses of different algorithms?

Extending Rice's Framework, Smith-Miles et. al. (2014)

Infer y(a, x) for

any x € P
Generate new Define algorithm
instances footprints o (y(a, Z))
x e P z(x) € R? Footprints
Problem > Instance in instance
space space space
S:\zitb;rtgzenérlapte o* = argmax 5(z(x), y(a. x))
x €1 . a € A
Problem A\gor\t.hm Algorithm
selection
subset space
Construct feature o = argmax S(f(x). y(e, x)) Measure y(a,x) by
vector f Dimension applying a to x
reduction I
£(F(x). () -
f(x) € F y(a,x) € Y
Feature Performance
space space

Smith-Miles et al., “Towards objective measures of algorithm performance

across instance space”, 2014

Extending Rice's Framework, Smith-Miles et. al. (2014)

Extensions to Rice's framework:

» Separation of Problem space P and available sub-space of
instances /

» 2-dimensional instance space for visualization of instance
and features distributions

» Selection mapping can either be computed from the feature
space or from the instance space

» Performance can be visualized in the instance space and
inferred for unseen instances

Instance Space Analysis

Goals:
» Visualize distribution and diversity of instances
P> Assess adequacy of features
P Identify regions of strength footprints and weaknesses

» Infer where additional instances might be needed

Smith-Miles and Mufioz, “Instance Space Analysis for Algorithm Testing:
Methodology and Software Tools”, 2023

https://matilda.unimelb.edu.au/matilda/
https://matilda.unimelb.edu.au/matilda/
https://github.com/andremun/InstanceSpace
https://github.com/andremun/InstanceSpace

Instance Space Analysis

Goals:
» Visualize distribution and diversity of instances
P> Assess adequacy of features
P Identify regions of strength footprints and weaknesses

» Infer where additional instances might be needed

Software Tool: MATILDA

Ofyia0

https://matilda.unimelb.edu.au/ https://github.com/andremun/
matilda/ InstanceSpace

Smith-Miles and Mufioz, “Instance Space Analysis for Algorithm Testing:
Methodology and Software Tools”, 2023

https://matilda.unimelb.edu.au/matilda/
https://matilda.unimelb.edu.au/matilda/
https://github.com/andremun/InstanceSpace
https://github.com/andremun/InstanceSpace

Back to the Example: Rotating Workforce Scheduling

Sub-space of instances /:
» 20 initial real-life instances

» 2000 generated instances

Kletzander et al., “Exact methods for extended rotating workforce
scheduling problems”, 2019

Musliu, “Heuristic methods for automatic rotating workforce scheduling”,
2006

Back to the Example: Rotating Workforce Scheduling

Sub-space of instances /:
» 20 initial real-life instances

» 2000 generated instances

Algorithm space A:
» 2 constraint programming models:

» Model 2 extends model 1 by additional constraint to check
sequences at the start of each block

» Metaheuristic

Same performance space Y (runtime) and feature space F

Kletzander et al., “Exact methods for extended rotating workforce
scheduling problems”, 2019

Musliu, “Heuristic methods for automatic rotating workforce scheduling”,
2006

Original Projection

Bound extreme outliers

Normalization using Box-Cox and Z transformation

>

>

> Remove low diversity features

P> Retain features with high correlation to performance
>

Clustering

Kletzander, Musliu, and Smith-Miles, “Instance space analysis for a
personnel scheduling problem”, 2021

Original Projection

Bound extreme outliers

Normalization using Box-Cox and Z transformation

>

>

> Remove low diversity features

P> Retain features with high correlation to performance
>

Clustering

—0.45 —0.39\ T maxShiftDayFactor’

5 0.45 0.40 maxDayFraction’
(1) =| 050 008 | - employees’
2 —-0.32 0.37 minAvgBlockLength’
023 —0.63 blockTightness’

Kletzander, Musliu, and Smith-Miles, “Instance space analysis for a
personnel scheduling problem”, 2021

Original Feature Distribution

075

maxShiftDayFactor

maxDayFraction

=

Original Feature Distribution

» Good visualization of feature distribution
» Most influential features:

» Possible block length distributions (block Tightness,
minAvgBlockLength)

> Instance size (employees)

» Distribution throughout the week (maxShiftDayFactor)

» Daily workload (maxDayFraction)

> 2 separated visible clusters

» Several real-life instances are outliers

Original Feature Distribution

» Good visualization of feature distribution
» Most influential features:

>

>
| 4
>

Possible block length distributions (block Tightness,
minAvgBlockLength)

Instance size (employees)

Distribution throughout the week (maxShiftDayFactor)
Daily workload (maxDayFraction)

> 2 separated visible clusters

» Several real-life instances are outliers

Analysis indicates more instances would be beneficial

» Adapt instance generator

>
>
>

Cover gap
Include real-life instances
Increase number of employees

> Added 3480 new instances

Extended Instances

-1

-2

-3

x
x

x X

new
original
real

Extended Instances

5
x new
4+ x * original
X x_real
3.
2.
N1
ob
1 F
2F
3
-2 -1 0 1 2 3 4 5
Z1
—0.31 031\T minDayFraction’
z1\ _ | 002 -057| maxDayFraction’
/) | -047 —0.08 maxAvgBlockLength'

0.44 0.15 minAvgBlockLength'’

Extended Instance Set - Feature Distribution

minDayFraction maxDayFraction

[} = =

Extended Instance Set - Feature Distribution

» z;: Axis for avgBlockLength

» Low minimum and high maximum on the left
» High minimum and low maximum on the right

» z: Axis for dayFraction

» Low minimum and high maximum on the bottom
» High minimum and low maximum on the top

> Gap is closed and real-life instances are well covered

Algorithm Results - Feasibility

All methods combined

Number of results

N

Algorithm Results - Footprints

Metaheuristic SVM portfolio

Algorithm Results

» Clearly visible boundaries between feasibility and infeasibility
» Due to bounds for number of blocks on z;-axis
» Due to high demand fluctuations on z-axis

» Instances along this boundary are most difficult

» Strong and weak areas can be generalized to footprints
» Algorithm portfolio can be calculated from instance space

» Recommended algorithm for each instance

» Generalization to further areas can be attempted

» Some areas might not have any well-performing algorithms
— can be reported as hard to solve

= Instance Space Analysis allows deep insights in algorithm
behaviour and instance distribution

Hyper-heuristics
CHeSC
Reinforcement learning
Real-world problem domains
Example: Online Bin Packing

Example: CP

» Modern CP solvers internally employ heuristics

» Large Neighborhood Search (LNS):
Repeatedly apply partial relaxation, then reconstruct

Thomas and Schaus, “Revisiting the Self-adaptive Large Neighborhood
Search”, 2018

Example: CP

» Modern CP solvers internally employ heuristics
» Large Neighborhood Search (LNS):
Repeatedly apply partial relaxation, then reconstruct
Relaxation
Random x% of variables are relaxed

Propagation Guided Fix groups of
dependent variables

Value Guided Relax variables with same
value

Precedency based Assume values are
start times, build partial random order

Thomas and Schaus, “Revisiting the Self-adaptive Large Neighborhood
Search”, 2018

Example: CP

» Modern CP solvers internally employ heuristics

» Large Neighborhood Search (LNS):
Repeatedly apply partial relaxation, then reconstruct

Relaxation Reconstruction
Random x% of variables are relaxed Limited backtracking
search

Propagation Guided Fix groups of

dependent variables Variable selection:
First Fail, Most Recent
Conflict, Weighted Degree

Value Guided Relax variables with same
value
Precedency based Assume values are Value selection:

start times, build partial random order Min/max domain,
random, value sticking,...

Thomas and Schaus, “Revisiting the Self-adaptive Large Neighborhood
Search”, 2018

(Meta)heuristic approach

(Meta)heuristic

» Operates on set of
(possible) solutions

» Implementation defines
sample order

0000, 0001, 0010, ... , Solution

1101, 1110, 1111 space

Hyper-heuristic approach

Hyper-heuristic

» Operates on set of
(low-level) heuristics

> Complete algorithms @D Heuristic
» Algorithmic LT space

components

» Indirectly explore
solution space via
low-level heuristics

0000, 0001, 0010, ... , Solution

1101, 1110, 1111 space

Classification

Feedback Nature of the heuristic search space
Heuristic selection construction
_ : heuristics
Onlire ¢ \ Mehodologies to sdlect
leaming perturbation
Hvoer- heuristics
Offline rm);lll);’cs
leaming Heuristic generation construction
heuristics
No- .
. M ethodol ogies to generate
leaming \—/ perturbation
| heuristics

Source: Burke et al., “A Classification of Hyper-Heuristic Approaches:

Revisited”, 2019

Example: CP - Adaptive Large Neighborhood Search

Relaxation Reconstruction
operator portfolio operator portfolio
RC4

RX

Y ""-"“""n-"-"""iReward

Initial Solution RXi RCi ' @Yw—»
+

Relax Reconstruct N|°

Example: CP - Operator selection

» Assign weight to each operator

» Select relaxation and reconstruction @
operator based on current weight
(Roulette Wheel Selection) ©) ®

Laborie and Godard, “Self-adapting large neighborhood search: Application
to single-mode scheduling problems”, 2007

Thomas and Schaus, “Revisiting the Self-adaptive Large Neighborhood
Search”, 2018

Example: CP - Operator selection

» Assign weight to each operator

» Select relaxation and reconstruction @
operator based on current weight
(Roulette Wheel Selection) ©) ®

» Update weights according to result:

A
weight;y1(0) = (1 — «) * weight(0) + « * A—i

Laborie and Godard, “Self-adapting large neighborhood search: Application
to single-mode scheduling problems”, 2007

Thomas and Schaus, “Revisiting the Self-adaptive Large Neighborhood
Search”, 2018

Example: CP - Results

i3
operator 28| «|n o |-
% Slilglelzslalnln a8 2
~ 9 g Q a 8 a8 e <]] - N a
“’gg% $|f|a|a |88l |2|¥ |89 |g|g|B |8 |g|s
= | 8|8 § |88 || |88 |5[5[¢x &8 2|85
10
Kopt 30
70
10
Costimpact | 30
70
10
Sequential 30]
70
Value Guided - | 10 L
MaxValues | 20
7
Value Guided - | 10
MinGroups | 30
10
Precedency Based | 30
70
Propagation | 10 —
Guided o
7
10 | |
Random 30
70
Value Guided - | 1
Random Groups | 2
70
Reversed 10
Propagation | 30
Guided 70
VRPTW. Cutstock h colorir Lotsizing | Warehouse Steel | QAP RCPSP TSP Jobshop

Fig. 1. Heat map of the relaxation operators selection for the Eval window approach

Thomas and Schaus, “Revisiting the Self-adaptive Large Neighborhood
Search”, 2018

Cross-Domain Heuristic Search Challenge

» Proposed in 2011%
» 6 problem domains:

» Max-SAT, Bin Packing, Personnel Scheduling, Flow Shop,
TSP, VRP

.- ee LR T
sen e ses Tass ses
CROS5-DOMAIN HEURISTIC SEARCH CHALLENGE

1Ochoa et al., “HyFlex: A Benchmark Framework for Cross-Domain
Heuristic Search”, 2012

Cross-Domain Heuristic Search Challenge

» Proposed in 20111
» 6 problem domains:
» Max-SAT, Bin Packing, Personnel Scheduling, Flow Shop,
TSP, VRP
» Domain implementations and instance data hidden from
hyper-heuristics

Tees” s .
CROS5-DOMAIN HEURISTIC SEARCH CHALLENGE

1Ochoa et al., “HyFlex: A Benchmark Framework for Cross-Domain
Heuristic Search”, 2012

Cross-Domain Heuristic Search Challenge

» Proposed in 2011%
» 6 problem domains:

» Max-SAT, Bin Packing, Personnel Scheduling, Flow Shop,
TSP, VRP

» Domain implementations and instance data hidden from
hyper-heuristics

» Introduced hyper-heuristic framework HyFlex

Tees” s .
CROS5-DOMAIN HEURISTIC SEARCH CHALLENGE

1Ochoa et al., “HyFlex: A Benchmark Framework for Cross-Domain
Heuristic Search”, 2012

HyFlex

Hyper-heuristic I Problem domain
Select low-level heuristic n ‘ Instance representation ‘
i to apply to a solution j |55 5k -
and store result in k ‘Low-level heuristics hq,..., Ay ‘

‘ Solution memory $i, ..., Sn ‘
Determine acceptance / Flsn)
rejection of result k

‘ Objective function f(s)

Domain barrier

Reinforcement learning

update

Agent State-action

values

policy
reward,

state action

Mischek and Musliu, “Reinforcement Learning for Cross-Domain
Hyper-Heuristics”, 2022

Kletzander and Musliu, “Large-State Reinforcement Learning for
Hyper-Heuristics”, 2023

Reinforcement learning

» » Natural fit
update
> Actions: low-level
State-action heuristics
Agent values .
» Reward: Function of
olicy objective value
reward, ’

state action

» Different options for
remaining components:
» State representation
» Decision policy
> Update rule

Mischek and Musliu, “Reinforcement Learning for Cross-Domain
Hyper-Heuristics”, 2022

Kletzander and Musliu, “Large-State Reinforcement Learning for
Hyper-Heuristics”, 2023

RL - Solution chains

» Periodically reset solution, if no improvement found

> Balance long, expensive chains with short chains of limited
reach

» Best results following Luby's sequence

T14

Chuang and Smith, “A study of agnostic hyper-heuristics based on
sampling solution chains”, 2017

RL - State representation

» Issue: Most interesting information is hidden

» Intuition: Extract information from search history and
trajectory of objective value

RL - State representation

» Issue: Most interesting information is hidden

» Intuition: Extract information from search history and

vVvvyVvVvyy

trajectory of objective value

Last heuristic

Last heuristic type
Last change sign

Last change magnitude
Chain progress

Steps since last
improvement magnitude

Steps magnitude and time

Objective relative to initial
or best

Relative number of
improving / 0-cost heuristics

Measures of recent heuristics

Problem-independent hyper-heuristics on new domains

Empl. | Mon Tue Wed Thu Fri Sat Sun
1 D D D D N N - Start End E.
2 - - A A A A N 6:00 18:00 3
3 N N - - D D D 12:00 24:00 2
4 A A N N - - - 0 6 12 18 24 21:00 9:00 1
Rotating Workforce Schedule Minimum Shift Design
Project 1

L, v
My : Ep, E; WB: E

Job 1 a: E1, B> | WBs [EQq

(Tasks 1, 2, 3, 5)

Mg : E; WB:

Job 2 g B/ WBs

(Task 4)

Job 3

Mg : E3 /| WB, / EQg, EQg
(Tasks 6, 7) [

Test Laboratory Scheduling Bus Driver Scheduling

TLSP: Low-level-heuristic portfolio

Mutation

» Random move: Mode,
time, resources, grouping

> Randomize jobs
» Random walk

TLSP: Low-level-heuristic portfolio

Mutation

» Random move: Mode,
time, resources, grouping

> Randomize jobs
» Random walk

Ruin and recreate
» Delete and reschedule

» Delete and regroup

TLSP: Low-level-heuristic portfolio

Mutation

» Random move: Mode,
time, resources, grouping

> Randomize jobs
» Random walk

Ruin and recreate
» Delete and reschedule

» Delete and regroup

Crossover
» Random projects
» Single point XO
» Two point XO

TLSP: Low-level-heuristic portfolio

Mutation

» Random move: Mode,
time, resources, grouping

Local search
» HillClimbing

» mode & time,

> Randomize jobs resources, JobOpt,

» Random walk grouping
» MinConflict
Ruin and recreate > mode & time,
» Delete and reschedule resources, JobOpt,

grouping
» Stochastic hill climbing

> all neighborhoods
» high, medium, low T

» Delete and regroup

Crossover
» Random projects
» Single point XO
» Two point XO

» Single project CP
> Job-wise greedy

Experimental results: TLSP

v
3
<
3
— (o] —_—
‘6 '
1] o]
=5 34
=09
g = o] o]
[}
&2 ~] o o
g A — o —
[8 j —_ - J —_
= ‘ : : ‘ ‘ :
' ' ' ! ' -
- _| ! ! ' |
4 ! : o
— = =
-4 T = -— == -
3
T T T T T T T T T
AdapHH SA VLNS AdapHH SA VLNS AdapHH SA VLNS
All Small Large

Mischek and Musliu, “Leveraging problem-independent hyper-heuristics for
real-world test laboratory scheduling”, 2023

Experimental results: Bus Driver Scheduling

Instance SA CH-FR CH-PR GIHH L-GIHH LAST-RL
10 14717.4 14838.8 14805.6 14787.0 14773.6 14779.8
20 30860.6 30706.6 30671.2 30731.6 30694.0 30669.4
30 50947.4 50946.6 50903.6 50765.8 50854.2 50890.0
40 69119.8 68583.4 68847.6 68639.6 68645.4 68478.2
50 87013.2 87091.2 87034.0 86762.0 86729.8 86681.8
60 103967.6 103521.8 103464.8 103138.8 103149.8 102935.8
70 122753.6 122247.2 122025.6 121671.8 121660.6 121916.2
80 140482.4 139382.4 139209.2 139123.0 139041.6 139250.2
90 156385.0 154938.0 154972.4 155093.8 155113.2 154915.0
100 173524.0 171718.6 171182.4 171278.2 171325.4 171589.4

Kletzander and Musliu, “Hyper-Heuristics for Personnel Scheduling
Domains”, 2022

Online Bin Packing

Goal: pack sequence of items in as few bins as possible
» Fixed capacity C for bins
P Items packed one-by-one

» Size of future items unknown

1

Online Bin Packing

Goal: pack sequence of items in as few bins as possible
» Fixed capacity C for bins
P Items packed one-by-one

» Size of future items unknown

| L

Popular heuristic: Best Fit - Choose (feasible) bin with smallest
capacity

Online Bin Packing - Genetic Programming

» Compute score for each bin per
item

» Assign to bin with highest score

Burke et al., “The scalability of evolved on line bin packing heuristics”,
2007

Online Bin Packing - Genetic Programming

» Compute score for each bin per a ‘
item
» Assign to bin with highest score e e

» Evaluation tree

Functions: +, -, *, /

v

-1.50.8 10 0.7 0.4

» Terminals: S, E (emptiness, -
remaining capacity) L
33 25110

Burke et al., “The scalability of evolved on line bin packing heuristics”,
2007

Online Bin Packing - Genetic Programming

» Heuristics evolved on sequences of 100 - 500 items
» Evaluated on much longer sequences (up to 100000)

> Best Fit better up to half size of training sequences, then
evolved heuristics take the lead

Burke et al., “The scalability of evolved on line bin packing heuristics”,

2007
Tauritz and Woodward, “Generative Hyper-Heuristics”, 2022

Online Bin Packing - Genetic Programming

» Heuristics evolved on sequences of 100 - 500 items

Evaluated on much longer sequences (up to 100000)

v

> Best Fit better up to half size of training sequences, then
evolved heuristics take the lead

» Intuition: Item of size 20 may fit in gap of size 30, but better
item (size 25-30) is likely to come along eventually.

Burke et al., “The scalability of evolved on line bin packing heuristics”,

2007
Tauritz and Woodward, “Generative Hyper-Heuristics”, 2022

Online Bin Packing - Genetic Programming

» Heuristics evolved on sequences of 100 - 500 items

Evaluated on much longer sequences (up to 100000)

v

> Best Fit better up to half size of training sequences, then
evolved heuristics take the lead

» Intuition: Item of size 20 may fit in gap of size 30, but better
item (size 25-30) is likely to come along eventually.

Other applications: Black-box search operators, graph partitioning,
graph generation, ...

Burke et al., “The scalability of evolved on line bin packing heuristics”,

2007
Tauritz and Woodward, “Generative Hyper-Heuristics”, 2022

Outlook

Preference Explanation and Decision Support for
Multi-Objective Real-World Test Laboratory Scheduling

» Preference weights for
multi-objective problems can
be challenging to determine

» Shapley values can be used
to capture relationships
between objectives and
provide useful suggestions
for weight updates

» Case study: Decision
support system for
multi-objective TLSP

(a) uniform,
=15

(c) exponential,
vy=15

BN neutral (best) NN neutral EEE failure

1.0
0.8
0.6
04
0.2

0.0

(b) uniform,
v =10

1.0
0.8
0.6
0.4
0.2

0.0

(d) exponential,
v =10

Investigating Large Neighbourhood Search for Bus Driver
Scheduling

. . [T [H Paid break
» Hybrid solution B i Hriori
method for complex : Milewww.ow-

. . ® S DO W T BT
real-life scheduling : L 5 O £y
problem e cheEsmERm

» Select meaningful
subproblem based on s
problem structure ¢
—~ 4 h
» Solve subproblem g o et M 4
. P .,’.\‘".« 20 TLaY i\"
(almost) exactly using R RPN SR ¥y
Column Generation .
0 10 20 30

Instance

Co-Authors/Selected References

1)

2)
3)
4)
5)
6)
/)

8)

9)

10)
11)
12)

13)

Philipp Danzinger, Tobias Geibinger, David Janneau, Florian Mischek, Nysret Musliu, Christian
Poschalko: A System for Automated Industrial Test Laboratory Scheduling. ACM Trans. Intell. Syst.
Technol. 14(1): 3:1-3:27 (2023)

Lucas Kletzander, Nysret Musliu: Solving the general employee scheduling problem. Comput. Oper.
Res. 113 (2020)

Nysret Musliu, Andrea Schaerf, Wolfgang Slany: Local search for shift design. Eur. J. Oper. Res.
153(1): 51-64 (2004)

Andreas Beer, Johannes Gartner, Nysret Musliu, Werner Schafhauser, Wolfgang Slany: An Al-Based
Break-Scheduling System for Supervisory Personnel. IEEE Intell. Syst. 25(2): 60-73 (2010)

Florian Mischek, Nysret Musliu: A local search framework for industrial test laboratory scheduling.
Ann. Oper. Res. 302(2): 533-562 (2021)

Felix Winter, Nysret Musliu: Constraint-based Scheduling for Paint Shops in the Automotive Supply
Industry. ACM Trans. Intell. Syst. Technol. 12(2): 17:1-17:25 (2021)

Felix Winter, Nysret Musliu, Emir Demirovic, Christoph Mrkvicka: Solution Approaches for an
Automotive Paint Shop Scheduling Problem. ICAPS 2019: 573-581

Marie-Louise Lackner, Christoph Mrkvicka, Nysret Musliu, Daniel Walkiewicz, Felix Winter: Minimizing
Cumulative Batch Processing Time for an Industrial Oven Scheduling Problem. CP 2021: 37:1-37:18
and Constraint Journal (2023)

Martin Josef Geiger, Lucas Kletzander, Nysret Musliu: Solving the Torpedo Scheduling Problem.
Journal of Artificial Intelligence Research. Vol 66: 1-32, 2019

Maximilian Moser, Nysret Musliu, Andrea Schaerf, Felix Winter: Exact and metaheuristic approaches
for unrelated parallel machine scheduling. J. Sched. 25(5): 507-534 (2022)

Nysret Musliu, Andreas Schutt, Peter]. Stuckey: Solver Independent Rotating Workforce Scheduling.
CPAIOR 2018: 429-445

Nysret Musliu, Johannes Gartner, Wolfgang Slany:Efficient generation of rotating workforce
schedules. Discret. Appl. Math. 118(1-2): 85-98 (2002)

Lucas Kletzander, Nysret Musliu, Johannes Gartner, Thomas Krennwallner, Werner Schafhauser:
Exact Methods for Extended Rotating Workforce Scheduling Problems. ICAPS 2019: 519-527

Co-Authors/Selected References

14)
15)
16)
17)

18)

19)
20)
21)
22)
23)
24)
25)

26)

Nysret Musliu: Combination of Local Search Strategies for Rotating Workforce Scheduling Problem.
IJCAI 2005: 1529-1530

Michael Abseher, Nysret Musliu, Stefan Woltran: Improving the Efficiency of Dynamic Programming on
Tree Decompositions via Machine Learning. J. Artif. Intell. Res. 58: 829-858 (2017)

Magdalena Widl, Nysret Musliu:The break scheduling problem: complexity results and practical
algorithms. Memetic Comput. 6(2): 97-112 (2014)

Simon Strassl, Nysret Musliu: Instance space analysis and algorithm selection for the job shop
scheduling problem. Comput. Oper. Res. 141: 105661 (2022)

Arnaud De Coster, Nysret Musliu, Andrea Schaerf, Johannes Schoisswohl, Kate Smith-Miles: Algorithm
selection and instance space analysis for curriculum-based course timetabling. J. Sched. 25(1): 35-58
(2022)

Lucas Kletzander, Nysret Musliu, Kate Smith-Miles: Instance space analysis for a personnel scheduling
problem. Ann. Math. Artif. Intell. 89(7): 617-637 (2021)

Lucas Kletzander, Nysret Musliu: Hyper-Heuristics for Personnel Scheduling Domains. ICAPS 2022:
462-470

Florian Mischek, Nysret Musliu: Reinforcement Learning for Cross-Domain Hyper-Heuristics. IJCAI 2022:
4793-4799

Lucas Kletzander and Nysret Musliu. Large-state reinforcement learning for hyper-heuristics.
Proceedings of the 37th AAAI Conference on Artificial Intelligence, 2023.

Michael Abseher, Nysret Musliu, Stefan Woltran:Improving the Efficiency of Dynamic Programming on
Tree Decompositions via Machine Learning. J. Artif. Intell. Res. 58: 829-858 (2017)

Emir Demirovic, Nysret Musliu: MaxSAT-based large neighborhood search for high school timetabling.
Comput. Oper. Res. 78: 172-180 (2017)

Nysret Musliu, Felix Winter: A Hybrid Approach for the Sudoku Problem: Using Constraint Programming
in Iterated Local Search. IEEE Intell. Syst. 32(2): 52-62 (2017)

Markus Triska, Nysret Musliu: An effective greedy heuristic for the Social Golfer Problem. Ann. Oper.
Res. 194(1): 413-425 (2012)

	Automated algorithm selection
	Instance space analysis
	Hyper-heuristics
	CHeSC
	Reinforcement learning
	Real-world problem domains
	Example: Online Bin Packing

	Outlook

