
AI Techniques for Solving Scheduling
Problems

Lucas Kletzander, Nysret Musliu, Florian Mischek
Christian Doppler Laboratory for Artificial Intelligence and

Optimization for Planning and Scheduling
Institute of Logic and Computation, DBAI

Faculty of Informatics, TU Wien

ICAPS 2024: Tutorial

Outline

 Scheduling Problems: Case studies

 Solution techniques
 Solver-independent modelling
 Constraint programming
 Metaheuristic techniques
 Hybrid methods

 Automated algorithm selection and instance space
analysis

 Automated algorithm design/Hyper-heuristics

 Industrial applications

Scheduling Problems: Case studies

Investigated Applications in our Lab

Rotating Workforce Scheduling

Shift Design

Break Scheduling

Nurse Rostering

Torpedo Scheduling

Electric Vehicle Charging

Tourist Trip Planning

Social Golfer Problem

High School Timetabling

Production Leveling Problem

Parallel Machine Scheduling

Industrial Oven Scheduling

Physician Scheduling During a Pandemic

Unicost Set Covering

(Hyper)tree Decomposition

Graph Coloring

Traveling Salesman Problem

Vehicle Routing

Sudoku

Bus Driver Scheduling

Test Laboratory Scheduling

Artificial Teeth Production
Scheduling

Project Scheduling

Paint Shop Scheduling Problem

Curriculum-based Course
Timetabling

…

Employee Scheduling

 Work schedules influence the lives of employees

 Unsuitable timetable can have a tremendous
negative impact on one's health, social life, and
motivation at work

 Organizations in the commercial and public sector
must meet their workforce requirements and
ensure the quality of their services and operations

Employee Scheduling

Shift plans

Companies

Employees Labor law

Employee Scheduling

Real world employee scheduling problems appear in many companies

Airports

Call centers

Air traffic control

Hospitals

Public transport

Production plants
…

Employee Scheduling Problems

Phase 1:
Workforce requirements

Employee Scheduling Problems

Phase 2:
Shift Design/Break Scheduling

Phase 1:
Workforce requirements

Employee Scheduling Problems

Phase 2:
Shift Design/Break Scheduling

Phase 3:
Assignment of shifts

Phase 1:
Workforce requirements

Selected papers: [3,4,11,12, 13]

Employees working shifts:

D: Day shift ; A: Afternoon shift ,
N: Night shift; Day off

Example: Rotating Workforce Scheduling

Length of schedule: If the schedule is cyclic the total length of a
planning period will be: NumberOfEmployees*7

Number of
employees

Constraints

Temporal requirements:
required number of employees
in shift i during day j

Monday (Mo): D: 3, N: 3, A: 3

Not allowed sequences of
shifts:

Maximum and minimum
length of periods of
successive shifts.
e.g.: N: 2-5, D: 2-6

Maximum and minimum length
of work days and days-off blocks
e.g.: days-off block: 2-4

work block: 2-6

Objective

Find a cyclic schedule (assignment of shifts to
employees) that satisfies the temporal requirement, and
all other constraints

Possible soft constraints:
• Optimization of free weekends (weekends off)
• Optimizing the distribution of weekends
• …

Test Laboratory Scheduling

Test Laboratory Scheduling

Production Planning and Scheduling

 In these applications it is important to
 Reduce resource consumption, including energy
 Increase production efficiency
…

Industrial Oven Scheduling

Task: Jobs need to be scheduled and batched efficiently for processing in ovens

Challenge: Many constraints and solution objectives need to be considered

Selected papers: [8]

Paint Shop Scheduling

Selected papers: [6,7]

Other real-world problems…

Torpedo Scheduling, ACP Challenge, 2016

Parallel Machine Scheduling

…

Selected papers: [9,10]

Other problems…

Week 4

6 10 12
13 3 4
15 5 1
11 14 7
8 9 2

8 4 6
12 3 7
10 11 5
13 15 2
9 14 1

1 4 2
11 6 15
7 13 9
12 8 5
14 10 3

6 5 14
2 10 7
4 9 11
3 15 8
12 1 13

8 14 13
1 6 3
15 10 9
12 2 11
5 4 7

Week 1 Week 2 Week 3

Selected papers: [24, 25, 26]

https://www.un.org/en/sustainable-development-goals

Solving techniques

Metaheuristic techniques

Tabu search
Simulated annealing
Evolutionary strategies
Memetic algorithms
…

Complete approaches

Constraint programming
Answer set programming
SAT/SMT
Mathematical programming
…

AI and optimization methods

Hybrid methods
Large neighborhood search
Hyper-heuristics
Machine learning based approaches
…

Research work in the CD-Lab Artis

 Formal mathematical
formulations

 Identification of
related problems in
the literature

 Complexity analysis

 General variants of
problems

 New problem
instances provided
to the literature

 Novel modeling

 AI solving techniques

 Hyper-heuristics

 New (hybrid)
algorithms

 Algorithm selection
and instance space
analysis

 Decision support
systems

New challenging
problems provided by

the industry

Existing problems

https://cdlab-artis.dbai.tuwien.ac.at/

Constraint Programming Techniques

 Tree search
 Constraint propagation
 Forward checking
 Lazy clause generation
 Variable ordering heuristics
 …

Modeling and solvers

 Constraint Programming
 Solvers: OR-Tools, Chuffed, CP Optimizer…
 The MiniZinc challenge:

https://www.minizinc.org/challenge.html
 Mathematical Programming
 Solvers: Gurobi, CPLEX…

 Answer Set Programming
 Solvers: Potassco (the Potsdam Answer Set Solving

Collection), DLV, …
 SAT
 Solvers: http://www.satcompetition.org/

 …

MinZinc

 Constraint modeling language
 Used for modeling constraint

satisfaction/optimization problems
 High-level
 Solver-independent
 Model is compiled into FlatZinc that is understood by a

wide range of solvers (CP, MIP, …)
 MiniZinc is developed at Monash University
 Free and open-source

Example

MiniZinc Handbook. Peter J. Stuckey, Kim Marriot, Guido Tack:
https://www.minizinc.org/doc2.2.1/en/MiniZinc%20Handbook.pdf

Rotating Workforce Scheduling: Constraint Programming

N. Musliu, A. Schutt, P. J.Stuckey: Solver Independent Rotating Workforce Scheduling. CPAIOR 2018

Temporal Requirements

Global constraints

Sequence constraints

Sequence constraints

Symmetry Breaking Constraints

MiniZinc model

https://www.minizinc.org/challenge2018/results2018.html

Download all problems -> rotating-workforce

Test Laboratory Scheduling: Constraint Programming

P. Danzinger, T. Geibinger, D. Janneau, F. Mischek, N. Musliu, C. Poschalko: A System for
Automated Industrial Test Laboratory Scheduling. ACM Trans. Intell. Syst. Technol. (2023)

Example Constraints

Large neighborhood search

Various problem dependent
operators

Exact solvers (CP, MIP…) or other
greedy/heuristic methods

Test Laboratory Scheduling: LNS

Metaheuristics

Local Search Techniques

 Based on the neighbourhood of the current solution

 The solution is changed iteratively using
neighbourhood relations (moves)

 Acceptable or optimal solutions are often reached

x
N(x)
.

S

Local Search Techniques

1. Construct the initial solution s
2. Generate neighbourhood N(s) of solution s
3. Select from the neighbourhood the descendant of the

current solution
4. Go to step 2

Advanced metaheuristic techniques
 Simulated Annealing
 Tabu Search
 Iterated Local Search
 Min-Conflicts
 …
Metaheuristics include a mechanism to escape local
optima

Neighborhoods: Rotating Workforce Scheduing

Neighborhoods: Test Laboratory Scheduling

Memetic Algorithms: Crossover

Hybrid techniques

Methods of Logic Mathematical Optimization

Methods of Artificial Intelligence
(Machine Learning, Heuristics…)

…

Part 1: Conclusions

 Many optimization problems in industry are still solved
manually

 AI and optimization offer tremendous potential for further
improving solutions in these domains

 Success stories:
 Test lab scheduling
 Workforce scheduling
 Machine scheduling
 Oven scheduling
 Educational timetabling, Sport timetabling
 …

 No free lunch
 Combination of AI and optimization techniques is crucial

Challenges

 Automated generation of neighborhoods
 Weights for soft constraints
 Explainability
 Automated modeling
 …

Automated algorithm selection

Instance space analysis

Hyper-heuristics

Outlook

Algorithm Selection - Motivation

Often, several search algorithms are available for solving a
particular problem

▶ No free lunch theorem

▶ ”. . . for any algorithm, any elevated performance over one
class of problems is offset by performance over another class”

▶ ”. . . any two algorithms are equivalent when their performance
is averaged across all possible problems”

⇒ How to select the best algorithm for a specific problem
instance?

Wolpert and Macready, “No free lunch theorems for optimization”, 1997
Wolpert and Macready, “Coevolutionary free lunches”, 2005

Algorithm Selection - Motivation

Often, several search algorithms are available for solving a
particular problem

▶ No free lunch theorem

▶ ”. . . for any algorithm, any elevated performance over one
class of problems is offset by performance over another class”

▶ ”. . . any two algorithms are equivalent when their performance
is averaged across all possible problems”

⇒ How to select the best algorithm for a specific problem
instance?

Wolpert and Macready, “No free lunch theorems for optimization”, 1997
Wolpert and Macready, “Coevolutionary free lunches”, 2005

Algorithm Selection Problem, Rice (1976)

Rice, “The algorithm selection problem”, 1976
Smith-Miles, “Cross-disciplinary perspectives on meta-learning for

algorithm selection”, 2009

Algorithm Selection Problem, Rice (1976)

Input:

▶ Problem space P that represents the set of instances of a
problem class

▶ Feature space F that contains measurable characteristics of
the instances generated by a computational feature extraction
process applied to P

▶ Set of considered algorithms A for tackling the problem

▶ Performance space Y maps application of an algorithm on
an instance to a set of performance metrics

Algorithm Selection Problem: For a given problem instance
x ∈ P, with features f (x) ∈ F , find the selection mapping S(f (x))
into the algorithm space, such that the selected algorithm α ∈ A
maximizes the performance mapping y(α(x)) ∈ Y .

Back to the Example: Rotating Workforce Scheduling

▶ Varying demand for different shifts

Shift Mon Tue Wed Thu Fri Sat Sun

D 1 1 1 1 1 1 1
A 1 1 1 1 1 1 0
N 1 1 1 1 1 1 1

▶ 4 employees, cyclic schedule

▶ Regulations constraining shift assignments

▶ 5-7 days on work, 2-4 days off

▶ D: 2-5 days, A: 2-4 days, N: 2-3 days

▶ No D after A or N, no A after N

Back to the Example: Rotating Workforce Scheduling

Problem space P:

▶ 20 initial real-life instances

▶ 2000 generated instances

Algorithm space A:
▶ Constraint programming model:

▶ MiniZinc modelling language
▶ Lazy clause generation solver Chuffed

▶ Metaheuristic combining methods from:
▶ Min-conflict heuristics
▶ Tabu search
▶ Random walk

Kletzander et al., “Exact methods for extended rotating workforce
scheduling problems”, 2019

Musliu, “Heuristic methods for automatic rotating workforce scheduling”,
2006

Back to the Example: Rotating Workforce Scheduling

Problem space P:

▶ 20 initial real-life instances

▶ 2000 generated instances

Algorithm space A:
▶ Constraint programming model:

▶ MiniZinc modelling language
▶ Lazy clause generation solver Chuffed

▶ Metaheuristic combining methods from:
▶ Min-conflict heuristics
▶ Tabu search
▶ Random walk

Kletzander et al., “Exact methods for extended rotating workforce
scheduling problems”, 2019

Musliu, “Heuristic methods for automatic rotating workforce scheduling”,
2006

Back to the Example: Rotating Workforce Scheduling

Performance space Y:

▶ Satisfaction problem

▶ Measure runtime to feasible solution (timeout 1000 seconds)

Feature space F : How to get features from instance data?

▶ n employees

▶ Length of schedule w

▶ Set of work shifts A + day off O, A+ = A ∪ {O}
▶ Temporal requirement matrix R

▶ Min and max work block length ℓw and uw
▶ Min and max block lengths for shifts and days off ℓs and us

(s ∈ A+)

▶ Set of forbidden sequences F

Back to the Example: Rotating Workforce Scheduling

Performance space Y:

▶ Satisfaction problem

▶ Measure runtime to feasible solution (timeout 1000 seconds)

Feature space F : How to get features from instance data?

▶ n employees

▶ Length of schedule w

▶ Set of work shifts A + day off O, A+ = A ∪ {O}
▶ Temporal requirement matrix R

▶ Min and max work block length ℓw and uw
▶ Min and max block lengths for shifts and days off ℓs and us

(s ∈ A+)

▶ Set of forbidden sequences F

Direct Instance Features

Take instance data to directly use as features:

▶ Number of employees n

▶ Number of shifts m

▶ Minimum and maximum length of work blocks ℓw and uw as
well as blocks off shift ℓO and uO .

▶ Minimum, maximum and average for each of the sets
{ℓs | s ∈ A} and {us | s ∈ A}.

▶ Number of forbidden sequences f .

Advanced Instance Features

Compute features from relations, matrices, graphs, . . .

▶ workFraction: Percentage of all days spent working

▶ shiftFraction: Distribution of requirements between shifts

▶ blockTightness: blockTightness = up − low

▶ avgBlockLength: Lower and upper bound for the average
block length

▶ shiftBlockTightness: Freedom in choosing block lengths for
individual shift types

▶ shiftDayFactor : Regularity of shifts throughout the week

▶ dayFraction: Workload in relation to the number of employees
for individual days

▶ dailyChange: Change in workload between consecutive days

Model Features

Run fast algorithm initializations, heuristics, . . .

▶ MiniZinc to FlatZinc conversion statistics
▶ Number of boolean and interger variables
▶ Number of boolean and integer constraints

▶ Initialization in Chuffed:
▶ Number of variables, propagators, SAT variables
▶ Number of binary, ternary, and long clauses
▶ Average length of long clauses

Algorithm Selection

Use any supervised machine learning approach of your choice:

▶ Bayesian Networks

▶ Decision Trees

▶ k-Nearest Neighbor

▶ Random Forests

▶ Multilayer Perceptrons

▶ Support Vector Machines

▶ Deep Neural Networks

Algorithm Selection and Analysis for RWS

▶ Method: Random Forests

▶ Chuffed vs. metaheuristic: accuracy 80%

▶ Predict timeout: accuracy 93%

▶ Feasible vs. infeasible: accuracy 98%

▶ Regression on magnitude of runtime: correlation 0.7 to 0.8

Learning within Algorithms

In this tutorial section: Decision between different algorithms

Other option: Selection / learning within algorithms

▶ Later in this tutorial: Learning to select algorithm components
(hyper-heuristics)

▶ Example for tree search: Variable / value selection

Learning without Features

Finding adequate features is one of the main challenges in
algorithm selection

⇒ What about algorithm selection without features?

▶ Recent research direction

▶ Directly use instance data as time series for Recurrent Neural
Network (RNN)

▶ Application to online 1D bin packing

Alissa, Sim, and Hart, “Automated algorithm selection: from feature-based
to feature-free approaches”, 2023

Automated algorithm selection

Instance space analysis

Hyper-heuristics

Outlook

Instance Space Analysis - Motivation

How do we analyze which method works well on which instances?
How do we evaluate a new method for our problem?

▶ Use benchmark instances

▶ Better in the average?

▶ Better in certain cases?

▶ Do the benchmark instances cover all interesting areas?

⇒ How to check instances and features to make sure that we can
properly identify strengths and weaknesses of different algorithms?

Extending Rice’s Framework, Smith-Miles et. al. (2014)

x ∈ P
Problem
space

x ∈ I
Problem
subset

f(x) ∈ F
Feature
space

z(x) ∈ R2

Instance
space

Footprints
in instance

space

Algorithm
selection

α ∈ A
Algorithm
space

y(α, x) ∈ Y
Performance

space

Select or generate
a subset I ⊂ P

Construct feature
vector f

Measure y(α, x) by
applying α to x

Generate new
instances

Define algorithm
footprints φ(y(α, I))

α∗ = argmax S(z(x), y(α, x))

Infer y(α, x) for
any x ∈ P

α∗ = argmax S(f(x), y(α, x))

Dimension
reduction

g(f(x), y(α, x))

Smith-Miles et al., “Towards objective measures of algorithm performance
across instance space”, 2014

Extending Rice’s Framework, Smith-Miles et. al. (2014)

Extensions to Rice’s framework:

▶ Separation of Problem space P and available sub-space of
instances I

▶ 2-dimensional instance space for visualization of instance
and features distributions

▶ Selection mapping can either be computed from the feature
space or from the instance space

▶ Performance can be visualized in the instance space and
inferred for unseen instances

Instance Space Analysis

Goals:

▶ Visualize distribution and diversity of instances

▶ Assess adequacy of features

▶ Identify regions of strength footprints and weaknesses

▶ Infer where additional instances might be needed

Software Tool: MATILDA

https://matilda.unimelb.edu.au/

matilda/

https://github.com/andremun/

InstanceSpace

Smith-Miles and Muñoz, “Instance Space Analysis for Algorithm Testing:
Methodology and Software Tools”, 2023

https://matilda.unimelb.edu.au/matilda/
https://matilda.unimelb.edu.au/matilda/
https://github.com/andremun/InstanceSpace
https://github.com/andremun/InstanceSpace

Instance Space Analysis

Goals:

▶ Visualize distribution and diversity of instances

▶ Assess adequacy of features

▶ Identify regions of strength footprints and weaknesses

▶ Infer where additional instances might be needed

Software Tool: MATILDA

https://matilda.unimelb.edu.au/

matilda/

https://github.com/andremun/

InstanceSpace

Smith-Miles and Muñoz, “Instance Space Analysis for Algorithm Testing:
Methodology and Software Tools”, 2023

https://matilda.unimelb.edu.au/matilda/
https://matilda.unimelb.edu.au/matilda/
https://github.com/andremun/InstanceSpace
https://github.com/andremun/InstanceSpace

Back to the Example: Rotating Workforce Scheduling

Sub-space of instances I :

▶ 20 initial real-life instances

▶ 2000 generated instances

Algorithm space A:
▶ 2 constraint programming models:

▶ Model 2 extends model 1 by additional constraint to check
sequences at the start of each block

▶ Metaheuristic

Same performance space Y (runtime) and feature space F

Kletzander et al., “Exact methods for extended rotating workforce
scheduling problems”, 2019

Musliu, “Heuristic methods for automatic rotating workforce scheduling”,
2006

Back to the Example: Rotating Workforce Scheduling

Sub-space of instances I :

▶ 20 initial real-life instances

▶ 2000 generated instances

Algorithm space A:
▶ 2 constraint programming models:

▶ Model 2 extends model 1 by additional constraint to check
sequences at the start of each block

▶ Metaheuristic

Same performance space Y (runtime) and feature space F

Kletzander et al., “Exact methods for extended rotating workforce
scheduling problems”, 2019

Musliu, “Heuristic methods for automatic rotating workforce scheduling”,
2006

Original Projection

▶ Bound extreme outliers

▶ Normalization using Box-Cox and Z transformation

▶ Remove low diversity features

▶ Retain features with high correlation to performance

▶ Clustering

(
z1
z2

)
=

−0.45 −0.39
0.45 0.40
0.50 0.08
−0.32 0.37
0.23 −0.63

⊺

·

maxShiftDayFactor ′

maxDayFraction′

employees′

minAvgBlockLength′

blockTightness′

Kletzander, Musliu, and Smith-Miles, “Instance space analysis for a
personnel scheduling problem”, 2021

Original Projection

▶ Bound extreme outliers

▶ Normalization using Box-Cox and Z transformation

▶ Remove low diversity features

▶ Retain features with high correlation to performance

▶ Clustering

(
z1
z2

)
=

−0.45 −0.39
0.45 0.40
0.50 0.08
−0.32 0.37
0.23 −0.63

⊺

·

maxShiftDayFactor ′

maxDayFraction′

employees′

minAvgBlockLength′

blockTightness′

Kletzander, Musliu, and Smith-Miles, “Instance space analysis for a
personnel scheduling problem”, 2021

Original Feature Distribution

employees blockTightness minAvgBlockLength

maxShiftDayFactor maxDayFraction

Original Feature Distribution

▶ Good visualization of feature distribution
▶ Most influential features:

▶ Possible block length distributions (blockTightness,
minAvgBlockLength)

▶ Instance size (employees)
▶ Distribution throughout the week (maxShiftDayFactor)
▶ Daily workload (maxDayFraction)

▶ 2 separated visible clusters

▶ Several real-life instances are outliers

Analysis indicates more instances would be beneficial
▶ Adapt instance generator

▶ Cover gap
▶ Include real-life instances
▶ Increase number of employees

▶ Added 3480 new instances

Original Feature Distribution

▶ Good visualization of feature distribution
▶ Most influential features:

▶ Possible block length distributions (blockTightness,
minAvgBlockLength)

▶ Instance size (employees)
▶ Distribution throughout the week (maxShiftDayFactor)
▶ Daily workload (maxDayFraction)

▶ 2 separated visible clusters

▶ Several real-life instances are outliers

Analysis indicates more instances would be beneficial
▶ Adapt instance generator

▶ Cover gap
▶ Include real-life instances
▶ Increase number of employees

▶ Added 3480 new instances

Extended Instances

(
z1
z2

)
=

−0.31 0.31
0.02 −0.57
−0.47 −0.08
0.44 0.15

⊺

·

minDayFraction′

maxDayFraction′

maxAvgBlockLength′

minAvgBlockLength′

Extended Instances

(
z1
z2

)
=

−0.31 0.31
0.02 −0.57
−0.47 −0.08
0.44 0.15

⊺

·

minDayFraction′

maxDayFraction′

maxAvgBlockLength′

minAvgBlockLength′

Extended Instance Set - Feature Distribution

minAvgBlockLength maxAvgBlockLength

minDayFraction maxDayFraction

Extended Instance Set - Feature Distribution

▶ z1: Axis for avgBlockLength
▶ Low minimum and high maximum on the left
▶ High minimum and low maximum on the right

▶ z2: Axis for dayFraction
▶ Low minimum and high maximum on the bottom
▶ High minimum and low maximum on the top

▶ Gap is closed and real-life instances are well covered

Algorithm Results - Feasibility

Chuffed model 1 Chuffed model 2 Metaheuristic

All methods combined Number of results

Algorithm Results - Footprints

Chuffed model 1 Chuffed model 2

Metaheuristic SVM portfolio

Algorithm Results

▶ Clearly visible boundaries between feasibility and infeasibility
▶ Due to bounds for number of blocks on z1-axis
▶ Due to high demand fluctuations on z2-axis

▶ Instances along this boundary are most difficult

▶ Strong and weak areas can be generalized to footprints
▶ Algorithm portfolio can be calculated from instance space

▶ Recommended algorithm for each instance
▶ Generalization to further areas can be attempted
▶ Some areas might not have any well-performing algorithms

→ can be reported as hard to solve

⇒ Instance Space Analysis allows deep insights in algorithm
behaviour and instance distribution

Automated algorithm selection

Instance space analysis

Hyper-heuristics
CHeSC
Reinforcement learning
Real-world problem domains
Example: Online Bin Packing

Outlook

Example: CP

▶ Modern CP solvers internally employ heuristics

▶ Large Neighborhood Search (LNS):
Repeatedly apply partial relaxation, then reconstruct

Relaxation

Random x% of variables are relaxed

Propagation Guided Fix groups of
dependent variables

Value Guided Relax variables with same
value

Precedency based Assume values are
start times, build partial random order

...

Reconstruction
Limited backtracking
search

Variable selection:
First Fail, Most Recent
Conflict, Weighted Degree

Value selection:
Min/max domain,
random, value sticking,...

Thomas and Schaus, “Revisiting the Self-adaptive Large Neighborhood
Search”, 2018

Example: CP

▶ Modern CP solvers internally employ heuristics

▶ Large Neighborhood Search (LNS):
Repeatedly apply partial relaxation, then reconstruct

Relaxation

Random x% of variables are relaxed

Propagation Guided Fix groups of
dependent variables

Value Guided Relax variables with same
value

Precedency based Assume values are
start times, build partial random order

...

Reconstruction
Limited backtracking
search

Variable selection:
First Fail, Most Recent
Conflict, Weighted Degree

Value selection:
Min/max domain,
random, value sticking,...

Thomas and Schaus, “Revisiting the Self-adaptive Large Neighborhood
Search”, 2018

Example: CP

▶ Modern CP solvers internally employ heuristics

▶ Large Neighborhood Search (LNS):
Repeatedly apply partial relaxation, then reconstruct

Relaxation

Random x% of variables are relaxed

Propagation Guided Fix groups of
dependent variables

Value Guided Relax variables with same
value

Precedency based Assume values are
start times, build partial random order

...

Reconstruction
Limited backtracking
search

Variable selection:
First Fail, Most Recent
Conflict, Weighted Degree

Value selection:
Min/max domain,
random, value sticking,...

Thomas and Schaus, “Revisiting the Self-adaptive Large Neighborhood
Search”, 2018

(Meta)heuristic approach

▶ Operates on set of
(possible) solutions

▶ Implementation defines
sample order

0000, 0001, 0010, ... ,

1101, 1110, 1111

(Meta)heuristic

Solution

space

Hyper-heuristic approach

▶ Operates on set of
(low-level) heuristics
▶ Complete algorithms
▶ Algorithmic

components

▶ Indirectly explore
solution space via
low-level heuristics

0000, 0001, 0010, ... ,

1101, 1110, 1111

H1, H2, H3, ...

Hyper-heuristic

Solution

space

Heuristic

space

Classification

Heuristic selection

Methodologies to select

Heuristic generation

Methodologiesto generate

construction
heuristics

perturbation
heuristics

construction
heuristics

perturbation
heuristics

Online
learning

Offline
learning

No-
learning

Feedback Nature of the heuristic search space

Hyper-
heuristics

Source: Burke et al., “A Classification of Hyper-Heuristic Approaches:
Revisited”, 2019

Example: CP - Adaptive Large Neighborhood Search

RX1 RC1

Select RX

Relaxation
operator portfolio

Reconstruction
operator portfolio

Initial Solution RXi RCi

Relax

Select RC

Yes

No

Termination?

Reconstruct

Reward

Example: CP - Operator selection

▶ Assign weight to each operator

▶ Select relaxation and reconstruction
operator based on current weight
(Roulette Wheel Selection)

▶ Update weights according to result:

weightt+1(o) = (1− α) ∗ weightt(o) + α ∗ ∆c

∆t

Laborie and Godard, “Self-adapting large neighborhood search: Application
to single-mode scheduling problems”, 2007

Thomas and Schaus, “Revisiting the Self-adaptive Large Neighborhood
Search”, 2018

Example: CP - Operator selection

▶ Assign weight to each operator

▶ Select relaxation and reconstruction
operator based on current weight
(Roulette Wheel Selection)

▶ Update weights according to result:

weightt+1(o) = (1− α) ∗ weightt(o) + α ∗ ∆c

∆t

Laborie and Godard, “Self-adapting large neighborhood search: Application
to single-mode scheduling problems”, 2007

Thomas and Schaus, “Revisiting the Self-adaptive Large Neighborhood
Search”, 2018

Example: CP - Results

Operator

% r
el

a
x

C1
0

3

R1
0

5

t0
9

-4

t0
9

-7

q
w

h
o

p
t-

o
1

8
-h

1
2

0
-1

q
w

h
o

p
t-

o
3

0
-h

3
2

0
-1

PS
P_

10
0

_
4

PS
P_

15
0

_
3

ca
p

1
0

1

ca
p

1
3

1

be
n

c
h_

7_
1

be
n

c
h_

7_
4

ch
r

22
b

ch
r

25
a

j12
0

_
11

_
3

j12
0

_
7_

10

kr
oA

2
0

0

kr
oB

1
5

0

la1
3

la1
7

10

30

70

10

30

70

10

30

70

10

30

70

10

30

70

10

30

70

10

30

70

10

30

70

10

30

70

10

30

70

RCPSP TSP JobShopVRPTW Cutstock Graph coloring Lot sizing Warehouse Steel QAP

Propagation

Guided

Random

Value Guided -

Random Groups

Reversed

Propagation

Guided

Value Guided -

Min Groups

Precedency Based

K Opt

Cost Impact

Sequential

Value Guided -

Max Values

F ig. 1. Heat map of the relaxation operators selection for the Eval window approach

Thomas and Schaus, “Revisiting the Self-adaptive Large Neighborhood
Search”, 2018

Cross-Domain Heuristic Search Challenge

▶ Proposed in 20111

▶ 6 problem domains:
▶ Max-SAT, Bin Packing, Personnel Scheduling, Flow Shop,

TSP, VRP

▶ Domain implementations and instance data hidden from
hyper-heuristics

▶ Introduced hyper-heuristic framework HyFlex

1Ochoa et al., “HyFlex: A Benchmark Framework for Cross-Domain
Heuristic Search”, 2012

Cross-Domain Heuristic Search Challenge

▶ Proposed in 20111

▶ 6 problem domains:
▶ Max-SAT, Bin Packing, Personnel Scheduling, Flow Shop,

TSP, VRP

▶ Domain implementations and instance data hidden from
hyper-heuristics

▶ Introduced hyper-heuristic framework HyFlex

1Ochoa et al., “HyFlex: A Benchmark Framework for Cross-Domain
Heuristic Search”, 2012

Cross-Domain Heuristic Search Challenge

▶ Proposed in 20111

▶ 6 problem domains:
▶ Max-SAT, Bin Packing, Personnel Scheduling, Flow Shop,

TSP, VRP

▶ Domain implementations and instance data hidden from
hyper-heuristics

▶ Introduced hyper-heuristic framework HyFlex

1Ochoa et al., “HyFlex: A Benchmark Framework for Cross-Domain
Heuristic Search”, 2012

HyFlex

Hyper-heuristic

Select low-level heuristic
i to apply to a solution j
and store result in k

Determine acceptance /
rejection of result

Problem domain

Instance representation

Low-level heuristics h1, . . . , hn

Solution memory s1, . . . , sm

Objective function f(s)

Domain barrier

hi, sj , sk

f(sk)

Reinforcement learning

Environment

Agent State-action

values

reward,
state

action

update

policy

▶ Natural fit
▶ Actions: low-level

heuristics
▶ Reward: Function of

objective value

▶ Different options for
remaining components:
▶ State representation
▶ Decision policy
▶ Update rule

Mischek and Musliu, “Reinforcement Learning for Cross-Domain
Hyper-Heuristics”, 2022

Kletzander and Musliu, “Large-State Reinforcement Learning for
Hyper-Heuristics”, 2023

Reinforcement learning

Environment

Agent State-action

values

reward,
state

action

update

policy

▶ Natural fit
▶ Actions: low-level

heuristics
▶ Reward: Function of

objective value

▶ Different options for
remaining components:
▶ State representation
▶ Decision policy
▶ Update rule

Mischek and Musliu, “Reinforcement Learning for Cross-Domain
Hyper-Heuristics”, 2022

Kletzander and Musliu, “Large-State Reinforcement Learning for
Hyper-Heuristics”, 2023

RL - Solution chains

▶ Periodically reset solution, if no improvement found
▶ Balance long, expensive chains with short chains of limited

reach
▶ Best results following Luby’s sequence

x0

x1 x2

x3x4

x5
x6

x7

x8
x9

x10

x11 x12

x13

x14

Chuang and Smith, “A study of agnostic hyper-heuristics based on
sampling solution chains”, 2017

RL - State representation

▶ Issue: Most interesting information is hidden

▶ Intuition: Extract information from search history and
trajectory of objective value

▶ Last heuristic

▶ Last heuristic type

▶ Last change sign

▶ Last change magnitude

▶ Chain progress

▶ Steps since last
improvement magnitude

▶ Steps magnitude and time

▶ Objective relative to initial
or best

▶ Relative number of
improving / 0-cost heuristics

▶ Measures of recent heuristics

▶ ...

RL - State representation

▶ Issue: Most interesting information is hidden

▶ Intuition: Extract information from search history and
trajectory of objective value

▶ Last heuristic

▶ Last heuristic type

▶ Last change sign

▶ Last change magnitude

▶ Chain progress

▶ Steps since last
improvement magnitude

▶ Steps magnitude and time

▶ Objective relative to initial
or best

▶ Relative number of
improving / 0-cost heuristics

▶ Measures of recent heuristics

▶ ...

Problem-independent hyper-heuristics on new domains

Empl. Mon Tue Wed Thu Fri Sat Sun

1 D D D D N N -
2 - - A A A A N
3 N N - - D D D
4 A A N N - - -

Rotating Workforce Schedule

0 6 12 18 24

Start End E.

6:00 18:00 3
12:00 24:00 2
21:00 9:00 1

Minimum Shift Design

Project 1

Job 1
(Tasks 1, 2, 3, 5)

MA : E1, E2 / WB5 / EQ4

Job 2
(Task 4)

MB : E1 / WB3

Job 3
(Tasks 6, 7)

MB : E3 / WB1 / EQ8, EQ9

Test Laboratory Scheduling Bus Driver Scheduling

TLSP: Low-level-heuristic portfolio

Mutation
▶ Random move: Mode,

time, resources, grouping

▶ Randomize jobs

▶ Random walk

Ruin and recreate
▶ Delete and reschedule

▶ Delete and regroup

Crossover
▶ Random projects

▶ Single point XO

▶ Two point XO

Local search
▶ HillClimbing

▶ mode & time,
resources, JobOpt,
grouping

▶ MinConflict
▶ mode & time,

resources, JobOpt,
grouping

▶ Stochastic hill climbing
▶ all neighborhoods
▶ high, medium, low T

▶ Single project CP

▶ Job-wise greedy

TLSP: Low-level-heuristic portfolio

Mutation
▶ Random move: Mode,

time, resources, grouping

▶ Randomize jobs

▶ Random walk

Ruin and recreate
▶ Delete and reschedule

▶ Delete and regroup

Crossover
▶ Random projects

▶ Single point XO

▶ Two point XO

Local search
▶ HillClimbing

▶ mode & time,
resources, JobOpt,
grouping

▶ MinConflict
▶ mode & time,

resources, JobOpt,
grouping

▶ Stochastic hill climbing
▶ all neighborhoods
▶ high, medium, low T

▶ Single project CP

▶ Job-wise greedy

TLSP: Low-level-heuristic portfolio

Mutation
▶ Random move: Mode,

time, resources, grouping

▶ Randomize jobs

▶ Random walk

Ruin and recreate
▶ Delete and reschedule

▶ Delete and regroup

Crossover
▶ Random projects

▶ Single point XO

▶ Two point XO

Local search
▶ HillClimbing

▶ mode & time,
resources, JobOpt,
grouping

▶ MinConflict
▶ mode & time,

resources, JobOpt,
grouping

▶ Stochastic hill climbing
▶ all neighborhoods
▶ high, medium, low T

▶ Single project CP

▶ Job-wise greedy

TLSP: Low-level-heuristic portfolio

Mutation
▶ Random move: Mode,

time, resources, grouping

▶ Randomize jobs

▶ Random walk

Ruin and recreate
▶ Delete and reschedule

▶ Delete and regroup

Crossover
▶ Random projects

▶ Single point XO

▶ Two point XO

Local search
▶ HillClimbing

▶ mode & time,
resources, JobOpt,
grouping

▶ MinConflict
▶ mode & time,

resources, JobOpt,
grouping

▶ Stochastic hill climbing
▶ all neighborhoods
▶ high, medium, low T

▶ Single project CP

▶ Job-wise greedy

Experimental results: TLSP

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

P
en

al
ty

(r
el

at
iv

e
to

 b
es

t)

AdapHH SA VLNS

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

AdapHH SA VLNS

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

AdapHH SA VLNS

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

All Small Large

Mischek and Musliu, “Leveraging problem-independent hyper-heuristics for
real-world test laboratory scheduling”, 2023

Experimental results: Bus Driver Scheduling

Instance SA CH-FR CH-PR GIHH L-GIHH LAST-RL

10 14717.4 14838.8 14805.6 14787.0 14773.6 14779.8
20 30860.6 30706.6 30671.2 30731.6 30694.0 30669.4
30 50947.4 50946.6 50903.6 50765.8 50854.2 50890.0
40 69119.8 68583.4 68847.6 68639.6 68645.4 68478.2
50 87013.2 87091.2 87034.0 86762.0 86729.8 86681.8
60 103967.6 103521.8 103464.8 103138.8 103149.8 102935.8
70 122753.6 122247.2 122025.6 121671.8 121660.6 121916.2
80 140482.4 139382.4 139209.2 139123.0 139041.6 139250.2
90 156385.0 154938.0 154972.4 155093.8 155113.2 154915.0
100 173524.0 171718.6 171182.4 171278.2 171325.4 171589.4

Kletzander and Musliu, “Hyper-Heuristics for Personnel Scheduling
Domains”, 2022

Online Bin Packing

Goal: pack sequence of items in as few bins as possible

▶ Fixed capacity C for bins

▶ Items packed one-by-one

▶ Size of future items unknown

C S

Popular heuristic: Best Fit - Choose (feasible) bin with smallest
capacity

Online Bin Packing

Goal: pack sequence of items in as few bins as possible

▶ Fixed capacity C for bins

▶ Items packed one-by-one

▶ Size of future items unknown

C S

Popular heuristic: Best Fit - Choose (feasible) bin with smallest
capacity

Online Bin Packing - Genetic Programming

▶ Compute score for each bin per
item

▶ Assign to bin with highest score

▶ Evaluation tree

▶ Functions: +, -, *, /

▶ Terminals: S ,E (emptiness,
remaining capacity)

/

S −

E S

3090 33 66 25 0

-1.50.8 10 0.7 0.4

Burke et al., “The scalability of evolved on line bin packing heuristics”,
2007

Online Bin Packing - Genetic Programming

▶ Compute score for each bin per
item

▶ Assign to bin with highest score

▶ Evaluation tree

▶ Functions: +, -, *, /

▶ Terminals: S ,E (emptiness,
remaining capacity)

/

S −

E S

3090 33 66 25 0

-1.50.8 10 0.7 0.4

Burke et al., “The scalability of evolved on line bin packing heuristics”,
2007

Online Bin Packing - Genetic Programming

▶ Heuristics evolved on sequences of 100 - 500 items

▶ Evaluated on much longer sequences (up to 100000)

▶ Best Fit better up to half size of training sequences, then
evolved heuristics take the lead

▶ Intuition: Item of size 20 may fit in gap of size 30, but better
item (size 25-30) is likely to come along eventually.

Other applications: Black-box search operators, graph partitioning,
graph generation, ...

Burke et al., “The scalability of evolved on line bin packing heuristics”,
2007

Tauritz and Woodward, “Generative Hyper-Heuristics”, 2022

Online Bin Packing - Genetic Programming

▶ Heuristics evolved on sequences of 100 - 500 items

▶ Evaluated on much longer sequences (up to 100000)

▶ Best Fit better up to half size of training sequences, then
evolved heuristics take the lead

▶ Intuition: Item of size 20 may fit in gap of size 30, but better
item (size 25-30) is likely to come along eventually.

Other applications: Black-box search operators, graph partitioning,
graph generation, ...

Burke et al., “The scalability of evolved on line bin packing heuristics”,
2007

Tauritz and Woodward, “Generative Hyper-Heuristics”, 2022

Online Bin Packing - Genetic Programming

▶ Heuristics evolved on sequences of 100 - 500 items

▶ Evaluated on much longer sequences (up to 100000)

▶ Best Fit better up to half size of training sequences, then
evolved heuristics take the lead

▶ Intuition: Item of size 20 may fit in gap of size 30, but better
item (size 25-30) is likely to come along eventually.

Other applications: Black-box search operators, graph partitioning,
graph generation, ...

Burke et al., “The scalability of evolved on line bin packing heuristics”,
2007

Tauritz and Woodward, “Generative Hyper-Heuristics”, 2022

Automated algorithm selection

Instance space analysis

Hyper-heuristics

Outlook

Preference Explanation and Decision Support for
Multi-Objective Real-World Test Laboratory Scheduling

▶ Preference weights for
multi-objective problems can
be challenging to determine

▶ Shapley values can be used
to capture relationships
between objectives and
provide useful suggestions
for weight updates

▶ Case study: Decision
support system for
multi-objective TLSP

success (best) success neutral (best) neutral failure

A B C D E0.0

0.2

0.4

0.6

0.8

1.0

(a) uniform,
γ = 1.5

A B C D E0.0

0.2

0.4

0.6

0.8

1.0

(b) uniform,
γ = 10

A B C D E0.0

0.2

0.4

0.6

0.8

1.0

(c) exponential,
γ = 1.5

A B C D E0.0

0.2

0.4

0.6

0.8

1.0

(d) exponential,
γ = 10

Investigating Large Neighbourhood Search for Bus Driver
Scheduling

▶ Hybrid solution
method for complex
real-life scheduling
problem

▶ Select meaningful
subproblem based on
problem structure

▶ Solve subproblem
(almost) exactly using
Column Generation

0 10 20 30 40 50 60
Instance

−2

0

2

4

6

8

GA
P

(%
)

LNS
CMSA
ALNS
BP

Co-Authors/Selected References
1) Philipp Danzinger, Tobias Geibinger, David Janneau, Florian Mischek, Nysret Musliu, Christian

Poschalko: A System for Automated Industrial Test Laboratory Scheduling. ACM Trans. Intell. Syst.
Technol. 14(1): 3:1-3:27 (2023)

2) Lucas Kletzander, Nysret Musliu: Solving the general employee scheduling problem. Comput. Oper.
Res. 113 (2020)

3) Nysret Musliu, Andrea Schaerf, Wolfgang Slany: Local search for shift design. Eur. J. Oper. Res.
153(1): 51-64 (2004)

4) Andreas Beer, Johannes Gärtner, Nysret Musliu, Werner Schafhauser, Wolfgang Slany: An AI-Based
Break-Scheduling System for Supervisory Personnel. IEEE Intell. Syst. 25(2): 60-73 (2010)

5) Florian Mischek, Nysret Musliu: A local search framework for industrial test laboratory scheduling.
Ann. Oper. Res. 302(2): 533-562 (2021)

6) Felix Winter, Nysret Musliu: Constraint-based Scheduling for Paint Shops in the Automotive Supply
Industry. ACM Trans. Intell. Syst. Technol. 12(2): 17:1-17:25 (2021)

7) Felix Winter, Nysret Musliu, Emir Demirovic, Christoph Mrkvicka: Solution Approaches for an
Automotive Paint Shop Scheduling Problem. ICAPS 2019: 573-581

8) Marie-Louise Lackner, Christoph Mrkvicka, Nysret Musliu, Daniel Walkiewicz, Felix Winter: Minimizing
Cumulative Batch Processing Time for an Industrial Oven Scheduling Problem. CP 2021: 37:1-37:18
and Constraint Journal (2023)

9) Martin Josef Geiger, Lucas Kletzander, Nysret Musliu: Solving the Torpedo Scheduling Problem.
Journal of Artificial Intelligence Research. Vol 66: 1-32, 2019

10) Maximilian Moser, Nysret Musliu, Andrea Schaerf, Felix Winter: Exact and metaheuristic approaches
for unrelated parallel machine scheduling. J. Sched. 25(5): 507-534 (2022)

11) Nysret Musliu, Andreas Schutt, Peter J. Stuckey: Solver Independent Rotating Workforce Scheduling.
CPAIOR 2018: 429-445

12) Nysret Musliu, Johannes Gärtner, Wolfgang Slany:Efficient generation of rotating workforce
schedules. Discret. Appl. Math. 118(1-2): 85-98 (2002)

13) Lucas Kletzander, Nysret Musliu, Johannes Gärtner, Thomas Krennwallner, Werner Schafhauser:
Exact Methods for Extended Rotating Workforce Scheduling Problems. ICAPS 2019: 519-527

Co-Authors/Selected References

14) Nysret Musliu: Combination of Local Search Strategies for Rotating Workforce Scheduling Problem.
IJCAI 2005: 1529-1530

15) Michael Abseher, Nysret Musliu, Stefan Woltran: Improving the Efficiency of Dynamic Programming on
Tree Decompositions via Machine Learning. J. Artif. Intell. Res. 58: 829-858 (2017)

16) Magdalena Widl, Nysret Musliu:The break scheduling problem: complexity results and practical
algorithms. Memetic Comput. 6(2): 97-112 (2014)

17) Simon Strassl, Nysret Musliu: Instance space analysis and algorithm selection for the job shop
scheduling problem. Comput. Oper. Res. 141: 105661 (2022)

18) Arnaud De Coster, Nysret Musliu, Andrea Schaerf, Johannes Schoisswohl, Kate Smith-Miles: Algorithm
selection and instance space analysis for curriculum-based course timetabling. J. Sched. 25(1): 35-58
(2022)

19) Lucas Kletzander, Nysret Musliu, Kate Smith-Miles: Instance space analysis for a personnel scheduling
problem. Ann. Math. Artif. Intell. 89(7): 617-637 (2021)

20) Lucas Kletzander, Nysret Musliu: Hyper-Heuristics for Personnel Scheduling Domains. ICAPS 2022:
462-470

21) Florian Mischek, Nysret Musliu: Reinforcement Learning for Cross-Domain Hyper-Heuristics. IJCAI 2022:
4793-4799

22) Lucas Kletzander and Nysret Musliu. Large-state reinforcement learning for hyper-heuristics.
Proceedings of the 37th AAAI Conference on Artificial Intelligence, 2023.

23) Michael Abseher, Nysret Musliu, Stefan Woltran:Improving the Efficiency of Dynamic Programming on
Tree Decompositions via Machine Learning. J. Artif. Intell. Res. 58: 829-858 (2017)

24) Emir Demirovic, Nysret Musliu: MaxSAT-based large neighborhood search for high school timetabling.
Comput. Oper. Res. 78: 172-180 (2017)

25) Nysret Musliu, Felix Winter: A Hybrid Approach for the Sudoku Problem: Using Constraint Programming
in Iterated Local Search. IEEE Intell. Syst. 32(2): 52-62 (2017)

26) Markus Triska, Nysret Musliu: An effective greedy heuristic for the Social Golfer Problem. Ann. Oper.
Res. 194(1): 413-425 (2012)

	Automated algorithm selection
	Instance space analysis
	Hyper-heuristics
	CHeSC
	Reinforcement learning
	Real-world problem domains
	Example: Online Bin Packing

	Outlook

